TheBloke commited on
Commit
9d5a347
1 Parent(s): 2872465

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +80 -46
README.md CHANGED
@@ -1,22 +1,8 @@
1
  ---
2
- datasets:
3
- - anon8231489123/ShareGPT_Vicuna_unfiltered
4
- - ehartford/wizard_vicuna_70k_unfiltered
5
- - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
6
- - QingyiSi/Alpaca-CoT
7
- - teknium/GPT4-LLM-Cleaned
8
- - teknium/GPTeacher-General-Instruct
9
- - metaeval/ScienceQA_text_only
10
- - hellaswag
11
- - openai/summarize_from_feedback
12
- - riddle_sense
13
- - gsm8k
14
- - ewof/code-alpaca-instruct-unfiltered
15
- language:
16
- - en
17
- library_name: transformers
18
- pipeline_tag: text-generation
19
  ---
 
20
  <!-- header start -->
21
  <div style="width: 100%;">
22
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
@@ -31,50 +17,89 @@ pipeline_tag: text-generation
31
  </div>
32
  <!-- header end -->
33
 
34
- # Manticore 13B Chat GGML
35
 
36
- This is GGML format quantised 4-bit, 5-bit and 8-bit models of [OpenAccess AI Collective's Manticore 13B Chat](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
37
 
38
- This repo is the result of quantising to 4-bit, 5-bit and 8-bit GGML for CPU (+CUDA) inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
 
 
 
 
 
39
 
40
  ## Repositories available
41
 
42
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ).
43
- * [4-bit, 5-bit and 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GGML).
44
- * [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
 
 
 
 
 
 
 
 
 
45
 
46
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
47
 
48
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
49
 
50
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ## Provided files
53
- | Name | Quant method | Bits | Size | RAM required | Use case |
54
  | ---- | ---- | ---- | ---- | ---- | ----- |
55
- `Manticore-13B-Chat-Pyg.ggmlv3.q4_0.bin` | q4_0 | 4bit | 7.32GB | 10.0GB | 4-bit. |
56
- `Manticore-13B-Chat-Pyg.ggmlv3.q4_1.bin` | q4_1 | 4bit | 8.14GB | 10.5GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
57
- `Manticore-13B-Chat-Pyg.ggmlv3.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
58
- `Manticore-13B-Chat-Pyg.ggmlv3.q5_1.bin` | q5_1 | 5bit | 9.76GB | 13GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
59
- `Manticore-13B-Chat-Pyg.ggmlv3.q8_0.bin` | q8_0 | 8bit | 13.8GB | 16GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  ## How to run in `llama.cpp`
62
 
63
  I use the following command line; adjust for your tastes and needs:
64
 
65
  ```
66
- ./main -t 8 -m Manticore-13B-Chat-Pyg.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: write a story about llamas ### Response:"
67
  ```
 
68
 
69
- Change `-t 8` to the number of physical CPU cores you have.
70
 
71
- ## How to run in `text-generation-webui`
72
 
73
- GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.
74
 
75
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
76
 
77
-
78
  <!-- footer start -->
79
  ## Discord
80
 
@@ -95,27 +120,36 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
95
  * Patreon: https://patreon.com/TheBlokeAI
96
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
97
 
98
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
99
 
100
  Thank you to all my generous patrons and donaters!
 
101
  <!-- footer end -->
102
- # Original model card - Manticore 13B Chat
103
 
104
- Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using `###` in favor of
 
 
 
 
 
 
 
105
  chat only style prompts using `USER:`,`ASSISTANT:` as well as [pygmalion/metharme prompting](https://huggingface.co/PygmalionAI/metharme-7b#prompting) using `<|system|>, <|user|> and <|model|>` tokens.
106
 
107
- Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/EqrvvehG) or email [[email protected]](mailto:[email protected])
108
 
109
  # Training Datasets
110
 
111
- Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B.
112
 
113
  **Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.**
114
 
115
  - de-duped pygmalion dataset, filtered down to RP data
116
- - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented
117
  - hellaswag, updated for detailed explanations w 30K+ rows
118
- - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented
119
  - [ewof/code-alpaca-instruct-unfiltered](https://huggingface.co/datasets/ewof/code-alpaca-instruct-unfiltered)
120
 
121
  Manticore 13B
@@ -147,8 +181,8 @@ Try out the model in HF Spaces. The demo uses a quantized GGML version of the mo
147
 
148
  ## Build
149
 
150
- Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
151
- - 3 epochs taking approximately 8 hours. No further epochs will be released.
152
  - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
153
 
154
  ## Bias, Risks, and Limitations
 
1
  ---
2
+ inference: false
3
+ license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
+
6
  <!-- header start -->
7
  <div style="width: 100%;">
8
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
17
  </div>
18
  <!-- header end -->
19
 
20
+ # OpenAccess AI Collective's Manticore 13B Chat GGML
21
 
22
+ These files are GGML format model files for [OpenAccess AI Collective's Manticore 13B Chat](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
23
 
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
  ## Repositories available
32
 
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
36
+
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
+
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
+
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
 
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
 
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
 
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
+
52
+ ## Explanation of the new k-quant methods
53
+
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
+
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | Manticore-13B-Chat-Pyg.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | Manticore-13B-Chat-Pyg.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | Manticore-13B-Chat-Pyg.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | Manticore-13B-Chat-Pyg.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | Manticore-13B-Chat-Pyg.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
73
+ | Manticore-13B-Chat-Pyg.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | Manticore-13B-Chat-Pyg.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | Manticore-13B-Chat-Pyg.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | Manticore-13B-Chat-Pyg.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | Manticore-13B-Chat-Pyg.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | Manticore-13B-Chat-Pyg.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | Manticore-13B-Chat-Pyg.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | Manticore-13B-Chat-Pyg.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | Manticore-13B-Chat-Pyg.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m Manticore-13B-Chat-Pyg.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
 
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
99
+ ## How to run in `text-generation-webui`
100
 
101
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
102
 
 
103
  <!-- footer start -->
104
  ## Discord
105
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
 
130
 
131
+ # Original model card: OpenAccess AI Collective's Manticore 13B Chat
132
+
133
+
134
+ # Manticore 13B Chat
135
+
136
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
137
+
138
+ Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using `###` in favor of
139
  chat only style prompts using `USER:`,`ASSISTANT:` as well as [pygmalion/metharme prompting](https://huggingface.co/PygmalionAI/metharme-7b#prompting) using `<|system|>, <|user|> and <|model|>` tokens.
140
 
141
+ Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [[email protected]](mailto:[email protected])
142
 
143
  # Training Datasets
144
 
145
+ Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B.
146
 
147
  **Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.**
148
 
149
  - de-duped pygmalion dataset, filtered down to RP data
150
+ - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented
151
  - hellaswag, updated for detailed explanations w 30K+ rows
152
+ - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented
153
  - [ewof/code-alpaca-instruct-unfiltered](https://huggingface.co/datasets/ewof/code-alpaca-instruct-unfiltered)
154
 
155
  Manticore 13B
 
181
 
182
  ## Build
183
 
184
+ Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
185
+ - 3 epochs taking approximately 8 hours. No further epochs will be released.
186
  - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
187
 
188
  ## Bias, Risks, and Limitations