TheBloke commited on
Commit
5afdc6c
1 Parent(s): 923f272

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +187 -40
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - anon8231489123/ShareGPT_Vicuna_unfiltered
4
  - ehartford/wizard_vicuna_70k_unfiltered
@@ -12,13 +13,23 @@ datasets:
12
  - riddle_sense
13
  - gsm8k
14
  - ewof/code-alpaca-instruct-unfiltered
 
15
  language:
16
  - en
17
  library_name: transformers
18
- pipeline_tag: text-generation
19
  license: other
20
- inference: false
 
 
 
 
 
 
 
 
 
21
  ---
 
22
  <!-- header start -->
23
  <!-- 200823 -->
24
  <div style="width: auto; margin-left: auto; margin-right: auto">
@@ -36,50 +47,180 @@ inference: false
36
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
  <!-- header end -->
38
 
39
- # Manticore 13B GPTQ
 
 
 
 
 
40
 
41
- This repo contains 4bit GPTQ format quantised models of [OpenAccess AI Collective's Manticore Chat 13B](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
42
 
43
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
44
 
 
 
45
  ## Repositories available
46
 
47
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ).
48
- * [4-bit, 5-bit and 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GGML).
49
- * [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- ## How to easily download and use this model in text-generation-webui
52
 
53
- Open the text-generation-webui UI as normal.
54
 
55
  1. Click the **Model tab**.
56
  2. Under **Download custom model or LoRA**, enter `TheBloke/manticore-13b-chat-pyg-GPTQ`.
 
 
57
  3. Click **Download**.
58
- 4. Wait until it says it's finished downloading.
59
- 5. Click the **Refresh** icon next to **Model** in the top left.
60
- 6. In the **Model drop-down**: choose the model you just downloaded, `manticore-13b-chat-pyg-GPTQ`.
61
- 7. If you see an error in the bottom right, ignore it - it's temporary.
62
- 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
63
- 9. Click **Save settings for this model** in the top right.
64
- 10. Click **Reload the Model** in the top right.
65
- 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
66
 
67
- ## Provided files
 
68
 
69
- **`Manticore-13B-Chat-Pyg-GPTQ-4bit-128g.no-act-order.safetensors`**
70
 
71
- This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility.
72
 
73
- It was created without `--act-order` to ensure compatibility with all UIs out there.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- * `Manticore-13B-Chat-Pyg-GPTQ-4bit-128g.no-act-order.safetensors`
76
- * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
77
- * Works with text-generation-webui one-click-installers
78
- * Parameters: Groupsize = 128. No act-order.
79
- * Command used to create the GPTQ:
80
- ```
81
- python llama.py /workspace/models/openaccess-ai-collective_manticore-13b-chat-pyg wikitext2 --wbits 4 --true-sequential --groupsize 128 --save_safetensors /workspace/manticore-pyg/gptq/Manticore-13B-Chat-Pyg-GPTQ-4bit-128g.no-act-order.safetensors
82
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  <!-- footer start -->
85
  <!-- 200823 -->
@@ -89,10 +230,12 @@ For further support, and discussions on these models and AI in general, join us
89
 
90
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
91
 
92
- ## Thanks, and how to contribute.
93
 
94
  Thanks to the [chirper.ai](https://chirper.ai) team!
95
 
 
 
96
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
97
 
98
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -104,7 +247,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
104
 
105
  **Special thanks to**: Aemon Algiz.
106
 
107
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
108
 
109
 
110
  Thank you to all my generous patrons and donaters!
@@ -112,25 +255,29 @@ Thank you to all my generous patrons and donaters!
112
  And thank you again to a16z for their generous grant.
113
 
114
  <!-- footer end -->
115
- # Original Manticore Chat 13B model card
 
 
116
 
117
  # Manticore 13B Chat
118
 
119
- Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using `###` in favor of
 
 
120
  chat only style prompts using `USER:`,`ASSISTANT:` as well as [pygmalion/metharme prompting](https://huggingface.co/PygmalionAI/metharme-7b#prompting) using `<|system|>, <|user|> and <|model|>` tokens.
121
 
122
- Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/EqrvvehG) or email [[email protected]](mailto:[email protected])
123
 
124
  # Training Datasets
125
 
126
- Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B.
127
 
128
  **Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.**
129
 
130
  - de-duped pygmalion dataset, filtered down to RP data
131
- - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented
132
  - hellaswag, updated for detailed explanations w 30K+ rows
133
- - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented
134
  - [ewof/code-alpaca-instruct-unfiltered](https://huggingface.co/datasets/ewof/code-alpaca-instruct-unfiltered)
135
 
136
  Manticore 13B
@@ -162,8 +309,8 @@ Try out the model in HF Spaces. The demo uses a quantized GGML version of the mo
162
 
163
  ## Build
164
 
165
- Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
166
- - 3 epochs taking approximately 8 hours. No further epochs will be released.
167
  - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
168
 
169
  ## Bias, Risks, and Limitations
 
1
  ---
2
+ base_model: https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg
3
  datasets:
4
  - anon8231489123/ShareGPT_Vicuna_unfiltered
5
  - ehartford/wizard_vicuna_70k_unfiltered
 
13
  - riddle_sense
14
  - gsm8k
15
  - ewof/code-alpaca-instruct-unfiltered
16
+ inference: false
17
  language:
18
  - en
19
  library_name: transformers
 
20
  license: other
21
+ model_creator: Open Access AI Collective
22
+ model_name: Manticore 13B Chat Pyg
23
+ model_type: llama
24
+ pipeline_tag: text-generation
25
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
26
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
27
+ USER: {prompt} ASSISTANT:
28
+
29
+ '
30
+ quantized_by: TheBloke
31
  ---
32
+
33
  <!-- header start -->
34
  <!-- 200823 -->
35
  <div style="width: auto; margin-left: auto; margin-right: auto">
 
47
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
  <!-- header end -->
49
 
50
+ # Manticore 13B Chat Pyg - GPTQ
51
+ - Model creator: [Open Access AI Collective](https://huggingface.co/openaccess-ai-collective)
52
+ - Original model: [Manticore 13B Chat Pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
53
+
54
+ <!-- description start -->
55
+ ## Description
56
 
57
+ This repo contains GPTQ model files for [Open Access AI Collective's Manticore 13B Chat Pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg).
58
 
59
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
60
 
61
+ <!-- description end -->
62
+ <!-- repositories-available start -->
63
  ## Repositories available
64
 
65
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-AWQ)
66
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ)
67
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GGUF)
68
+ * [Open Access AI Collective's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: Vicuna
73
+
74
+ ```
75
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_GPTQ.md-provided-files start -->
83
+ ## Provided files and GPTQ parameters
84
+
85
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
86
+
87
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
88
+
89
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
90
+
91
+ <details>
92
+ <summary>Explanation of GPTQ parameters</summary>
93
+
94
+ - Bits: The bit size of the quantised model.
95
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
96
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
97
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
98
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
99
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
100
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
101
+
102
+ </details>
103
+
104
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
105
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
106
+ | [main](https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 7.45 GB | Yes | 4-bit, without Act Order and group size 128g. |
107
+
108
+ <!-- README_GPTQ.md-provided-files end -->
109
+
110
+ <!-- README_GPTQ.md-download-from-branches start -->
111
+ ## How to download from branches
112
+
113
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/manticore-13b-chat-pyg-GPTQ:main`
114
+ - With Git, you can clone a branch with:
115
+ ```
116
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/manticore-13b-chat-pyg-GPTQ
117
+ ```
118
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
119
+ <!-- README_GPTQ.md-download-from-branches end -->
120
+ <!-- README_GPTQ.md-text-generation-webui start -->
121
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
122
 
123
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
124
 
125
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
126
 
127
  1. Click the **Model tab**.
128
  2. Under **Download custom model or LoRA**, enter `TheBloke/manticore-13b-chat-pyg-GPTQ`.
129
+ - To download from a specific branch, enter for example `TheBloke/manticore-13b-chat-pyg-GPTQ:main`
130
+ - see Provided Files above for the list of branches for each option.
131
  3. Click **Download**.
132
+ 4. The model will start downloading. Once it's finished it will say "Done".
133
+ 5. In the top left, click the refresh icon next to **Model**.
134
+ 6. In the **Model** dropdown, choose the model you just downloaded: `manticore-13b-chat-pyg-GPTQ`
135
+ 7. The model will automatically load, and is now ready for use!
136
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
137
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
138
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
139
+ <!-- README_GPTQ.md-text-generation-webui end -->
140
 
141
+ <!-- README_GPTQ.md-use-from-python start -->
142
+ ## How to use this GPTQ model from Python code
143
 
144
+ ### Install the necessary packages
145
 
146
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
147
 
148
+ ```shell
149
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
150
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
151
+ ```
152
+
153
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
154
+
155
+ ```shell
156
+ pip3 uninstall -y auto-gptq
157
+ git clone https://github.com/PanQiWei/AutoGPTQ
158
+ cd AutoGPTQ
159
+ pip3 install .
160
+ ```
161
+
162
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
163
+
164
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
165
+ ```shell
166
+ pip3 uninstall -y transformers
167
+ pip3 install git+https://github.com/huggingface/transformers.git
168
+ ```
169
+
170
+ ### You can then use the following code
171
+
172
+ ```python
173
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
174
+
175
+ model_name_or_path = "TheBloke/manticore-13b-chat-pyg-GPTQ"
176
+ # To use a different branch, change revision
177
+ # For example: revision="main"
178
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
179
+ device_map="auto",
180
+ trust_remote_code=False,
181
+ revision="main")
182
+
183
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
184
+
185
+ prompt = "Tell me about AI"
186
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
187
+
188
+ '''
189
 
190
+ print("\n\n*** Generate:")
191
+
192
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
193
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
194
+ print(tokenizer.decode(output[0]))
195
+
196
+ # Inference can also be done using transformers' pipeline
197
+
198
+ print("*** Pipeline:")
199
+ pipe = pipeline(
200
+ "text-generation",
201
+ model=model,
202
+ tokenizer=tokenizer,
203
+ max_new_tokens=512,
204
+ do_sample=True,
205
+ temperature=0.7,
206
+ top_p=0.95,
207
+ top_k=40,
208
+ repetition_penalty=1.1
209
+ )
210
+
211
+ print(pipe(prompt_template)[0]['generated_text'])
212
+ ```
213
+ <!-- README_GPTQ.md-use-from-python end -->
214
+
215
+ <!-- README_GPTQ.md-compatibility start -->
216
+ ## Compatibility
217
+
218
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
219
+
220
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
221
+
222
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
223
+ <!-- README_GPTQ.md-compatibility end -->
224
 
225
  <!-- footer start -->
226
  <!-- 200823 -->
 
230
 
231
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
232
 
233
+ ## Thanks, and how to contribute
234
 
235
  Thanks to the [chirper.ai](https://chirper.ai) team!
236
 
237
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
238
+
239
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
240
 
241
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
247
 
248
  **Special thanks to**: Aemon Algiz.
249
 
250
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
251
 
252
 
253
  Thank you to all my generous patrons and donaters!
 
255
  And thank you again to a16z for their generous grant.
256
 
257
  <!-- footer end -->
258
+
259
+ # Original model card: Open Access AI Collective's Manticore 13B Chat Pyg
260
+
261
 
262
  # Manticore 13B Chat
263
 
264
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
265
+
266
+ Manticore 13B Chat builds on Manticore with new datasets, including a de-duped subset of the Pygmalion dataset. It also removes all Alpaca style prompts using `###` in favor of
267
  chat only style prompts using `USER:`,`ASSISTANT:` as well as [pygmalion/metharme prompting](https://huggingface.co/PygmalionAI/metharme-7b#prompting) using `<|system|>, <|user|> and <|model|>` tokens.
268
 
269
+ Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [[email protected]](mailto:[email protected])
270
 
271
  # Training Datasets
272
 
273
+ Manticore 13B Chat is a Llama 13B model fine-tuned on the following datasets along with the datasets from the original Manticore 13B.
274
 
275
  **Manticore 13B Chat was trained on 25% of the datasets below. The datasets were merged, shuffled, and then sharded into 4 parts.**
276
 
277
  - de-duped pygmalion dataset, filtered down to RP data
278
+ - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented
279
  - hellaswag, updated for detailed explanations w 30K+ rows
280
+ - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented
281
  - [ewof/code-alpaca-instruct-unfiltered](https://huggingface.co/datasets/ewof/code-alpaca-instruct-unfiltered)
282
 
283
  Manticore 13B
 
309
 
310
  ## Build
311
 
312
+ Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
313
+ - 3 epochs taking approximately 8 hours. No further epochs will be released.
314
  - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
315
 
316
  ## Bias, Risks, and Limitations