TheBloke commited on
Commit
ed3156c
1 Parent(s): e67f63a

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +306 -0
README.md ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # OpenAccess AI Collective's Minotaur 15B GPTQ
21
+
22
+ These files are GPTQ 4bit model files for [OpenAccess AI Collective's Minotaur 15B](https://huggingface.co/openaccess-ai-collective/minotaur-15b).
23
+
24
+ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
+
26
+ ## Repositories available
27
+
28
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/minotaur-15B-GPTQ)
29
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/minotaur-15B-GGML)
30
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/minotaur-15b)
31
+
32
+ ## How to easily download and use this model in text-generation-webui
33
+
34
+ Please make sure you're using the latest version of text-generation-webui
35
+
36
+ 1. Click the **Model tab**.
37
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/minotaur-15B-GPTQ`.
38
+ 3. Click **Download**.
39
+ 4. The model will start downloading. Once it's finished it will say "Done"
40
+ 5. In the top left, click the refresh icon next to **Model**.
41
+ 6. In the **Model** dropdown, choose the model you just downloaded: `minotaur-15B-GPTQ`
42
+ 7. The model will automatically load, and is now ready for use!
43
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
44
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
45
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
46
+
47
+ ## How to use this GPTQ model from Python code
48
+
49
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
50
+
51
+ `pip install auto-gptq`
52
+
53
+ Then try the following example code:
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, pipeline, logging
57
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
58
+ import argparse
59
+
60
+ model_name_or_path = "TheBloke/minotaur-15B-GPTQ"
61
+ model_basename = "gptq_model-4bit-128g"
62
+
63
+ use_triton = False
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
66
+
67
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
68
+ model_basename=model_basename,
69
+ use_safetensors=True,
70
+ trust_remote_code=False,
71
+ device="cuda:0",
72
+ use_triton=use_triton,
73
+ quantize_config=None)
74
+
75
+ # Note: check the prompt template is correct for this model.
76
+ prompt = "Tell me about AI"
77
+ prompt_template=f'''### Human: {prompt}
78
+ ### Assistant:'''
79
+
80
+ print("\n\n*** Generate:")
81
+
82
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
83
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
84
+ print(tokenizer.decode(output[0]))
85
+
86
+ # Inference can also be done using transformers' pipeline
87
+
88
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
89
+ logging.set_verbosity(logging.CRITICAL)
90
+
91
+ print("*** Pipeline:")
92
+ pipe = pipeline(
93
+ "text-generation",
94
+ model=model,
95
+ tokenizer=tokenizer,
96
+ max_new_tokens=512,
97
+ temperature=0.7,
98
+ top_p=0.95,
99
+ repetition_penalty=1.15
100
+ )
101
+
102
+ print(pipe(prompt_template)[0]['generated_text'])
103
+ ```
104
+
105
+ ## Provided files
106
+
107
+ **gptq_model-4bit-128g.safetensors**
108
+
109
+ This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
110
+
111
+ It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
112
+
113
+ * `gptq_model-4bit-128g.safetensors`
114
+ * Works with AutoGPTQ in CUDA or Triton modes.
115
+ * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
116
+ * Works with text-generation-webui, including one-click-installers.
117
+ * Parameters: Groupsize = 128. Act Order / desc_act = False.
118
+
119
+ <!-- footer start -->
120
+ ## Discord
121
+
122
+ For further support, and discussions on these models and AI in general, join us at:
123
+
124
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
125
+
126
+ ## Thanks, and how to contribute.
127
+
128
+ Thanks to the [chirper.ai](https://chirper.ai) team!
129
+
130
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
131
+
132
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
133
+
134
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
135
+
136
+ * Patreon: https://patreon.com/TheBlokeAI
137
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
138
+
139
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
140
+
141
+ **Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
142
+
143
+ Thank you to all my generous patrons and donaters!
144
+
145
+ <!-- footer end -->
146
+
147
+ # Original model card: OpenAccess AI Collective's Minotaur 15B
148
+
149
+
150
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
151
+ **[💵 Donate to OpenAccess AI Collective](https://github.com/sponsors/OpenAccess-AI-Collective) to help us keep building great tools and models!**
152
+
153
+ # Minotaur 15B 8K
154
+
155
+ Minotaur 15B is an instruct fine-tuned model on top of Starcoder Plus. Minotaur 15B is fine-tuned **on only completely open datasets** making this model reproducible by anyone.
156
+ Minotaur 15B has a context length of 8K tokens, allowing for strong recall at long contexts.
157
+
158
+ Questions, comments, feedback, looking to donate, or want to help? Reach out on our [Discord](https://discord.gg/PugNNHAF5r) or email [[email protected]](mailto:[email protected])
159
+
160
+ # Prompts
161
+ Chat only style prompts using `USER:`,`ASSISTANT:`.
162
+
163
+ <img src="https://huggingface.co/openaccess-ai-collective/minotaur-13b/resolve/main/minotaur.png" alt="minotaur" width="600" height="500"/>
164
+
165
+ # Training Datasets
166
+
167
+ Minotaur 15B model is fine-tuned on the following openly available datasets:
168
+
169
+ - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
170
+ - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
171
+ - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
172
+ - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
173
+ - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
174
+ - [camel-ai/math](https://huggingface.co/datasets/camel-ai/math)
175
+ - [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
176
+ - [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
177
+ - [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
178
+ - [winglian/evals](https://huggingface.co/datasets/winglian/evals) - instruct augmented datasets
179
+ - custom sysnthetic datasets around misconceptions, in-context qa, jokes, N-tasks problems, and context-insensitivity
180
+ - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses, derived from the `train` split
181
+ - [hellaswag](https://huggingface.co/datasets/hellaswag) - 30K+ rows of instruct augmented for detailed explanations w 30K+ rows, derived from the `train` split
182
+ - [riddle_sense](https://huggingface.co/datasets/riddle_sense) - instruct augmented, derived from the `train` split
183
+ - [gsm8k](https://huggingface.co/datasets/gsm8k) - instruct augmented, derived from the `train` split
184
+ - prose generation
185
+
186
+ # Shoutouts
187
+
188
+ Special thanks to Nanobit for helping with Axolotl and TheBloke for quantizing these models are more accessible to all.
189
+
190
+ # Demo
191
+
192
+ HF Demo in Spaces available in the [Community ChatBot Arena](https://huggingface.co/spaces/openaccess-ai-collective/rlhf-arena) under the OAAIC Chatbots tab.
193
+
194
+ ## Release Notes
195
+
196
+ - https://wandb.ai/wing-lian/minotaur-16b-8k/runs/tshgbl2k
197
+
198
+ ## Build
199
+
200
+ Minotaur was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 4XA100 80GB
201
+ - 1 epochs taking approximately 30 hours
202
+ - Trained using QLoRA techniques
203
+
204
+ ## Bias, Risks, and Limitations
205
+ Minotaur has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
206
+ Minotaur was fine-tuned from the base model StarCoder, please refer to its model card's Limitations Section for relevant information. (included below)
207
+
208
+ ## Benchmarks
209
+
210
+ TBD
211
+
212
+ ## Examples
213
+
214
+ TBD
215
+
216
+ # StarCoderPlus
217
+
218
+ Play with the instruction-tuned StarCoderPlus at [StarChat-Beta](https://huggingface.co/spaces/HuggingFaceH4/starchat-playground).
219
+
220
+ ## Table of Contents
221
+
222
+ 1. [Model Summary](##model-summary)
223
+ 2. [Use](##use)
224
+ 3. [Limitations](##limitations)
225
+ 4. [Training](##training)
226
+ 5. [License](##license)
227
+ 6. [Citation](##citation)
228
+
229
+ ## Model Summary
230
+
231
+ StarCoderPlus is a fine-tuned version of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase) on 600B tokens from the English web dataset [RedefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
232
+ combined with [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack) and a Wikipedia dataset.
233
+ It's a 15.5B parameter Language Model trained on English and 80+ programming languages. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150),
234
+ [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1.6 trillion tokens.
235
+
236
+ - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
237
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
238
+ - **Point of Contact:** [[email protected]](mailto:[email protected])
239
+ - **Languages:** English & 80+ Programming languages
240
+
241
+
242
+ ## Use
243
+
244
+ ### Intended use
245
+
246
+ The model was trained on English and GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, the instruction-tuned version in [StarChat](hhttps://huggingface.co/spaces/HuggingFaceH4/starchat-playground) makes a capable assistant.
247
+
248
+ **Feel free to share your generations in the Community tab!**
249
+
250
+ ### Generation
251
+ ```python
252
+ # pip install -q transformers
253
+ from transformers import AutoModelForCausalLM, AutoTokenizer
254
+
255
+ checkpoint = "bigcode/starcoderplus"
256
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
257
+
258
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
259
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
260
+
261
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
262
+ outputs = model.generate(inputs)
263
+ print(tokenizer.decode(outputs[0]))
264
+ ```
265
+
266
+ ### Fill-in-the-middle
267
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
268
+
269
+ ```python
270
+ input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
271
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
272
+ outputs = model.generate(inputs)
273
+ print(tokenizer.decode(outputs[0]))
274
+ ```
275
+
276
+ ### Attribution & Other Requirements
277
+
278
+ The training code dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
279
+
280
+ # Limitations
281
+
282
+ The model has been trained on a mixture of English text from the web and GitHub code. Therefore it might encounter limitations when working with non-English text, and can carry the stereotypes and biases commonly encountered online.
283
+ Additionally, the generated code should be used with caution as it may contain errors, inefficiencies, or potential vulnerabilities. For a more comprehensive understanding of the base model's code limitations, please refer to See [StarCoder paper](hhttps://arxiv.org/abs/2305.06161).
284
+
285
+ # Training
286
+ StarCoderPlus is a fine-tuned version on 600B English and code tokens of StarCoderBase, which was pre-trained on 1T code tokens. Below are the fine-tuning details:
287
+
288
+ ## Model
289
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
290
+ - **Finetuning steps:** 150k
291
+ - **Finetuning tokens:** 600B
292
+ - **Precision:** bfloat16
293
+
294
+ ## Hardware
295
+
296
+ - **GPUs:** 512 Tesla A100
297
+ - **Training time:** 14 days
298
+
299
+ ## Software
300
+
301
+ - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
302
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
303
+ - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
304
+
305
+ # License
306
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).