Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: https://huggingface.co/psmathur/model_007
|
3 |
+
inference: false
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
license: llama2
|
8 |
+
model_creator: Pankaj Mathur
|
9 |
+
model_name: Model 007 70B
|
10 |
+
model_type: llama
|
11 |
+
prompt_template: '### System:
|
12 |
+
|
13 |
+
{system_message}
|
14 |
+
|
15 |
+
|
16 |
+
### User:
|
17 |
+
|
18 |
+
{prompt}
|
19 |
+
|
20 |
+
|
21 |
+
### Assistant:
|
22 |
+
|
23 |
+
'
|
24 |
+
quantized_by: TheBloke
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- header start -->
|
28 |
+
<!-- 200823 -->
|
29 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
30 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
31 |
+
</div>
|
32 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
33 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
34 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
35 |
+
</div>
|
36 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
37 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
38 |
+
</div>
|
39 |
+
</div>
|
40 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
41 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
42 |
+
<!-- header end -->
|
43 |
+
|
44 |
+
# Model 007 70B - AWQ
|
45 |
+
- Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
|
46 |
+
- Original model: [Model 007 70B](https://huggingface.co/psmathur/model_007)
|
47 |
+
|
48 |
+
<!-- description start -->
|
49 |
+
## Description
|
50 |
+
|
51 |
+
This repo contains AWQ model files for [Pankaj Mathur's Model 007 70B](https://huggingface.co/psmathur/model_007).
|
52 |
+
|
53 |
+
|
54 |
+
### About AWQ
|
55 |
+
|
56 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
|
57 |
+
|
58 |
+
It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
|
59 |
+
<!-- description end -->
|
60 |
+
<!-- repositories-available start -->
|
61 |
+
## Repositories available
|
62 |
+
|
63 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/model_007-70B-AWQ)
|
64 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/model_007-70B-GPTQ)
|
65 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/model_007-70B-GGUF)
|
66 |
+
* [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/model_007)
|
67 |
+
<!-- repositories-available end -->
|
68 |
+
|
69 |
+
<!-- prompt-template start -->
|
70 |
+
## Prompt template: Orca-Hashes
|
71 |
+
|
72 |
+
```
|
73 |
+
### System:
|
74 |
+
{system_message}
|
75 |
+
|
76 |
+
### User:
|
77 |
+
{prompt}
|
78 |
+
|
79 |
+
### Assistant:
|
80 |
+
|
81 |
+
```
|
82 |
+
|
83 |
+
<!-- prompt-template end -->
|
84 |
+
|
85 |
+
|
86 |
+
<!-- README_AWQ.md-provided-files start -->
|
87 |
+
## Provided files and AWQ parameters
|
88 |
+
|
89 |
+
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
|
90 |
+
|
91 |
+
Models are released as sharded safetensors files.
|
92 |
+
|
93 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
94 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
95 |
+
| [main](https://huggingface.co/TheBloke/model_007-70B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.61 GB
|
96 |
+
|
97 |
+
<!-- README_AWQ.md-provided-files end -->
|
98 |
+
|
99 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
100 |
+
## Serving this model from vLLM
|
101 |
+
|
102 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
103 |
+
|
104 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
105 |
+
|
106 |
+
```shell
|
107 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/model_007-70B-AWQ --quantization awq
|
108 |
+
```
|
109 |
+
|
110 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
111 |
+
|
112 |
+
```python
|
113 |
+
from vllm import LLM, SamplingParams
|
114 |
+
|
115 |
+
prompts = [
|
116 |
+
"Hello, my name is",
|
117 |
+
"The president of the United States is",
|
118 |
+
"The capital of France is",
|
119 |
+
"The future of AI is",
|
120 |
+
]
|
121 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
122 |
+
|
123 |
+
llm = LLM(model="TheBloke/model_007-70B-AWQ", quantization="awq")
|
124 |
+
|
125 |
+
outputs = llm.generate(prompts, sampling_params)
|
126 |
+
|
127 |
+
# Print the outputs.
|
128 |
+
for output in outputs:
|
129 |
+
prompt = output.prompt
|
130 |
+
generated_text = output.outputs[0].text
|
131 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
132 |
+
```
|
133 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
134 |
+
|
135 |
+
<!-- README_AWQ.md-use-from-python start -->
|
136 |
+
## How to use this AWQ model from Python code
|
137 |
+
|
138 |
+
### Install the necessary packages
|
139 |
+
|
140 |
+
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
|
141 |
+
|
142 |
+
```shell
|
143 |
+
pip3 install autoawq
|
144 |
+
```
|
145 |
+
|
146 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
147 |
+
|
148 |
+
```shell
|
149 |
+
pip3 uninstall -y autoawq
|
150 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
151 |
+
cd AutoAWQ
|
152 |
+
pip3 install .
|
153 |
+
```
|
154 |
+
|
155 |
+
### You can then try the following example code
|
156 |
+
|
157 |
+
```python
|
158 |
+
from awq import AutoAWQForCausalLM
|
159 |
+
from transformers import AutoTokenizer
|
160 |
+
|
161 |
+
model_name_or_path = "TheBloke/model_007-70B-AWQ"
|
162 |
+
|
163 |
+
# Load model
|
164 |
+
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
|
165 |
+
trust_remote_code=False, safetensors=True)
|
166 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
|
167 |
+
|
168 |
+
prompt = "Tell me about AI"
|
169 |
+
prompt_template=f'''### System:
|
170 |
+
{system_message}
|
171 |
+
|
172 |
+
### User:
|
173 |
+
{prompt}
|
174 |
+
|
175 |
+
### Assistant:
|
176 |
+
|
177 |
+
'''
|
178 |
+
|
179 |
+
print("\n\n*** Generate:")
|
180 |
+
|
181 |
+
tokens = tokenizer(
|
182 |
+
prompt_template,
|
183 |
+
return_tensors='pt'
|
184 |
+
).input_ids.cuda()
|
185 |
+
|
186 |
+
# Generate output
|
187 |
+
generation_output = model.generate(
|
188 |
+
tokens,
|
189 |
+
do_sample=True,
|
190 |
+
temperature=0.7,
|
191 |
+
top_p=0.95,
|
192 |
+
top_k=40,
|
193 |
+
max_new_tokens=512
|
194 |
+
)
|
195 |
+
|
196 |
+
print("Output: ", tokenizer.decode(generation_output[0]))
|
197 |
+
|
198 |
+
# Inference can also be done using transformers' pipeline
|
199 |
+
from transformers import pipeline
|
200 |
+
|
201 |
+
print("*** Pipeline:")
|
202 |
+
pipe = pipeline(
|
203 |
+
"text-generation",
|
204 |
+
model=model,
|
205 |
+
tokenizer=tokenizer,
|
206 |
+
max_new_tokens=512,
|
207 |
+
do_sample=True,
|
208 |
+
temperature=0.7,
|
209 |
+
top_p=0.95,
|
210 |
+
top_k=40,
|
211 |
+
repetition_penalty=1.1
|
212 |
+
)
|
213 |
+
|
214 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
215 |
+
```
|
216 |
+
<!-- README_AWQ.md-use-from-python end -->
|
217 |
+
|
218 |
+
<!-- README_AWQ.md-compatibility start -->
|
219 |
+
## Compatibility
|
220 |
+
|
221 |
+
The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
|
222 |
+
|
223 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
|
224 |
+
<!-- README_AWQ.md-compatibility end -->
|
225 |
+
|
226 |
+
<!-- footer start -->
|
227 |
+
<!-- 200823 -->
|
228 |
+
## Discord
|
229 |
+
|
230 |
+
For further support, and discussions on these models and AI in general, join us at:
|
231 |
+
|
232 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
233 |
+
|
234 |
+
## Thanks, and how to contribute
|
235 |
+
|
236 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
237 |
+
|
238 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
239 |
+
|
240 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
241 |
+
|
242 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
243 |
+
|
244 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
245 |
+
|
246 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
247 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
248 |
+
|
249 |
+
**Special thanks to**: Aemon Algiz.
|
250 |
+
|
251 |
+
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
|
252 |
+
|
253 |
+
|
254 |
+
Thank you to all my generous patrons and donaters!
|
255 |
+
|
256 |
+
And thank you again to a16z for their generous grant.
|
257 |
+
|
258 |
+
<!-- footer end -->
|
259 |
+
|
260 |
+
# Original model card: Pankaj Mathur's Model 007 70B
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
# model_007
|
265 |
+
|
266 |
+
A hybrid (explain + instruct) style Llama2-70b model, Pleae check examples below for both style prompts, Here is the list of datasets used:
|
267 |
+
|
268 |
+
* Open-Platypus
|
269 |
+
* Alpaca
|
270 |
+
* WizardLM
|
271 |
+
* Dolly-V2
|
272 |
+
* Dolphin Samples (~200K)
|
273 |
+
* Orca_minis_v1
|
274 |
+
* Alpaca_orca
|
275 |
+
* WizardLM_orca
|
276 |
+
* Dolly-V2_orca
|
277 |
+
|
278 |
+
|
279 |
+
<br>
|
280 |
+
|
281 |
+
**P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.**
|
282 |
+
|
283 |
+
<br>
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
### quantized versions
|
288 |
+
Huge respect to man.. @TheBloke, here are the GGML/GPTQ/GGUF versions, go crazy :)
|
289 |
+
|
290 |
+
https://huggingface.co/TheBloke/model_007-70B-GGML
|
291 |
+
|
292 |
+
https://huggingface.co/TheBloke/model_007-70B-GGUF
|
293 |
+
|
294 |
+
https://huggingface.co/TheBloke/model_007-70B-GPTQ
|
295 |
+
|
296 |
+
<br>
|
297 |
+
|
298 |
+
#### license disclaimer:
|
299 |
+
|
300 |
+
This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
|
301 |
+
|
302 |
+
<br>
|
303 |
+
|
304 |
+
## Evaluation
|
305 |
+
|
306 |
+
We evaluated model_007 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
|
307 |
+
|
308 |
+
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
309 |
+
|
310 |
+
|||||
|
311 |
+
|:------:|:--------:|:-------:|:--------:|
|
312 |
+
|**Task**|**Metric**|**Value**|**Stderr**|
|
313 |
+
|*arc_challenge*|acc_norm|0.7108|0.0141|
|
314 |
+
|*hellaswag*|acc_norm|0.8765|0.0038|
|
315 |
+
|*mmlu*|acc_norm|0.6904|0.0351|
|
316 |
+
|*truthfulqa_mc*|mc2|0.6312|0.0157|
|
317 |
+
|**Total Average**|-|**0.72729**||
|
318 |
+
|
319 |
+
|
320 |
+
<br>
|
321 |
+
|
322 |
+
## Example Usage
|
323 |
+
|
324 |
+
Here is the Orca prompt format
|
325 |
+
|
326 |
+
```
|
327 |
+
### System:
|
328 |
+
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
329 |
+
|
330 |
+
### User:
|
331 |
+
Tell me about Orcas.
|
332 |
+
|
333 |
+
### Assistant:
|
334 |
+
|
335 |
+
```
|
336 |
+
|
337 |
+
Below shows a code example on how to use this model
|
338 |
+
|
339 |
+
```python
|
340 |
+
import torch
|
341 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
342 |
+
|
343 |
+
tokenizer = AutoTokenizer.from_pretrained("psmathur/model_007")
|
344 |
+
model = AutoModelForCausalLM.from_pretrained(
|
345 |
+
"psmathur/model_007",
|
346 |
+
torch_dtype=torch.float16,
|
347 |
+
load_in_8bit=True,
|
348 |
+
low_cpu_mem_usage=True,
|
349 |
+
device_map="auto"
|
350 |
+
)
|
351 |
+
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
|
352 |
+
|
353 |
+
#generate text steps
|
354 |
+
instruction = "Tell me about Orcas."
|
355 |
+
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
|
356 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
357 |
+
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
|
358 |
+
|
359 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
360 |
+
|
361 |
+
```
|
362 |
+
|
363 |
+
|
364 |
+
Here is the Alpaca prompt format
|
365 |
+
|
366 |
+
```
|
367 |
+
|
368 |
+
### User:
|
369 |
+
Tell me about Alpacas.
|
370 |
+
|
371 |
+
### Assistant:
|
372 |
+
|
373 |
+
```
|
374 |
+
|
375 |
+
Below shows a code example on how to use this model
|
376 |
+
|
377 |
+
```python
|
378 |
+
import torch
|
379 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
380 |
+
|
381 |
+
tokenizer = AutoTokenizer.from_pretrained("psmathur/model_007")
|
382 |
+
model = AutoModelForCausalLM.from_pretrained(
|
383 |
+
"psmathur/model_007",
|
384 |
+
torch_dtype=torch.float16,
|
385 |
+
load_in_8bit=True,
|
386 |
+
low_cpu_mem_usage=True,
|
387 |
+
device_map="auto"
|
388 |
+
)
|
389 |
+
#generate text steps
|
390 |
+
instruction = "Tell me about Alpacas."
|
391 |
+
prompt = f"### User: {instruction}\n\n### Assistant:\n"
|
392 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
393 |
+
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
|
394 |
+
|
395 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
396 |
+
|
397 |
+
```
|
398 |
+
|
399 |
+
<br>
|
400 |
+
|
401 |
+
#### Limitations & Biases:
|
402 |
+
|
403 |
+
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
|
404 |
+
|
405 |
+
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
|
406 |
+
|
407 |
+
Exercise caution and cross-check information when necessary.
|
408 |
+
|
409 |
+
|
410 |
+
<br>
|
411 |
+
|
412 |
+
### Citiation:
|
413 |
+
|
414 |
+
Please kindly cite using the following BibTeX:
|
415 |
+
|
416 |
+
```
|
417 |
+
@misc{model_007,
|
418 |
+
author = {Pankaj Mathur},
|
419 |
+
title = {model_007: A hybrid (explain + instruct) style Llama2-70b model},
|
420 |
+
year = {2023},
|
421 |
+
publisher = {HuggingFace},
|
422 |
+
journal = {HuggingFace repository},
|
423 |
+
howpublished = {\url{https://https://huggingface.co/psmathur/model_007},
|
424 |
+
}
|
425 |
+
```
|
426 |
+
|
427 |
+
```
|
428 |
+
@misc{mukherjee2023orca,
|
429 |
+
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
|
430 |
+
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
|
431 |
+
year={2023},
|
432 |
+
eprint={2306.02707},
|
433 |
+
archivePrefix={arXiv},
|
434 |
+
primaryClass={cs.CL}
|
435 |
+
}
|
436 |
+
```
|
437 |
+
|
438 |
+
```
|
439 |
+
@software{touvron2023llama2,
|
440 |
+
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
441 |
+
author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
|
442 |
+
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
|
443 |
+
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
|
444 |
+
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
|
445 |
+
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
|
446 |
+
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
|
447 |
+
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
|
448 |
+
year={2023}
|
449 |
+
}
|
450 |
+
```
|