---
base_model: openchat/openchat_3.5
inference: false
license: apache-2.0
model_creator: OpenChat
model_name: OpenChat 3.5 7B
model_type: mistral
prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
'
quantized_by: TheBloke
---
# OpenChat 3.5 7B - GGUF
- Model creator: [OpenChat](https://huggingface.co/openchat)
- Original model: [OpenChat 3.5 7B](https://huggingface.co/openchat/openchat_3.5)
## Description
This repo contains GGUF format model files for [OpenChat's OpenChat 3.5 7B](https://huggingface.co/openchat/openchat_3.5).
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openchat_3.5-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openchat_3.5-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openchat_3.5-GGUF)
* [OpenChat's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openchat/openchat_3.5)
## Prompt template: OpenChat
```
GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
```
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
Click to see details
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [openchat_3.5.Q2_K.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
| [openchat_3.5.Q3_K_S.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
| [openchat_3.5.Q3_K_M.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
| [openchat_3.5.Q3_K_L.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
| [openchat_3.5.Q4_0.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [openchat_3.5.Q4_K_S.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
| [openchat_3.5.Q4_K_M.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
| [openchat_3.5.Q5_0.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [openchat_3.5.Q5_K_S.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
| [openchat_3.5.Q5_K_M.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
| [openchat_3.5.Q6_K.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
| [openchat_3.5.Q8_0.gguf](https://huggingface.co/TheBloke/openchat_3.5-GGUF/blob/main/openchat_3.5.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/openchat_3.5-GGUF and below it, a specific filename to download, such as: openchat_3.5.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/openchat_3.5-GGUF openchat_3.5.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
More advanced huggingface-cli download usage
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/openchat_3.5-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/openchat_3.5-GGUF openchat_3.5.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m openchat_3.5.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p ` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/openchat_3.5-GGUF", model_file="openchat_3.5.Q4_K_M.gguf", model_type="mistral", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
# Original model card: OpenChat's OpenChat 3.5 7B
# OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
Online Demo •
Discord •
Huggingface •
Paper
**🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
**🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
[![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533)
## Usage
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](#installation) and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
Example request (click to expand)
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
Coding Mode
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Code",
"messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
}'
```
| Model | Size | Context | Weights | Serving |
|--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
Conversation templates (click to expand)
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```
## Benchmarks
| Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
|--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
| OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
| ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
| Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
| Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
| | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
**: Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
***: All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
## Limitations
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
## License
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
## Citation
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
## Acknowledgements
We extend our heartfelt gratitude to Alignment Lab AI, Nous Research, and Pygmalion AI for their substantial contributions to data collection and model training.
Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.
Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.