TheBloke commited on
Commit
30d31ea
1 Parent(s): 5ad75e3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +462 -0
README.md ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: rishiraj/smol-7b
3
+ datasets:
4
+ - HuggingFaceH4/no_robots
5
+ inference: false
6
+ language:
7
+ - en
8
+ license: apache-2.0
9
+ model-index:
10
+ - name: smol-7b
11
+ results: []
12
+ model_creator: Rishiraj Acharya
13
+ model_name: Smol 7B
14
+ model_type: mistral
15
+ pipeline_tag: text-generation
16
+ prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
17
+
18
+ '
19
+ quantized_by: TheBloke
20
+ tags:
21
+ - generated_from_trainer
22
+ widget:
23
+ - output:
24
+ text: Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that
25
+ a human cannot eat a helicopter, as it be a large machine made of metal and
26
+ suchlike, not fit for human consumption. A human can eat food, like a fine feast
27
+ of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty!
28
+ So, the answer be none, none at all. Arr!
29
+ text: '<|system|>
30
+
31
+ You are a friendly chatbot who always responds in the style of a pirate</s>
32
+
33
+ <|user|>
34
+
35
+ How many helicopters can a human eat in one sitting?</s>
36
+
37
+ <|assistant|>
38
+
39
+ '
40
+ ---
41
+ <!-- markdownlint-disable MD041 -->
42
+
43
+ <!-- header start -->
44
+ <!-- 200823 -->
45
+ <div style="width: auto; margin-left: auto; margin-right: auto">
46
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
47
+ </div>
48
+ <div style="display: flex; justify-content: space-between; width: 100%;">
49
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
50
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
51
+ </div>
52
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
53
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
54
+ </div>
55
+ </div>
56
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
57
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
58
+ <!-- header end -->
59
+
60
+ # Smol 7B - AWQ
61
+ - Model creator: [Rishiraj Acharya](https://huggingface.co/rishiraj)
62
+ - Original model: [Smol 7B](https://huggingface.co/rishiraj/smol-7b)
63
+
64
+ <!-- description start -->
65
+ ## Description
66
+
67
+ This repo contains AWQ model files for [Rishiraj Acharya's Smol 7B](https://huggingface.co/rishiraj/smol-7b).
68
+
69
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
70
+
71
+
72
+ ### About AWQ
73
+
74
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
75
+
76
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
77
+
78
+ It is supported by:
79
+
80
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
81
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
82
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
83
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
84
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
85
+
86
+ <!-- description end -->
87
+ <!-- repositories-available start -->
88
+ ## Repositories available
89
+
90
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/smol-7B-AWQ)
91
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/smol-7B-GPTQ)
92
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/smol-7B-GGUF)
93
+ * [Rishiraj Acharya's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/rishiraj/smol-7b)
94
+ <!-- repositories-available end -->
95
+
96
+ <!-- prompt-template start -->
97
+ ## Prompt template: OpenChat
98
+
99
+ ```
100
+ GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
101
+
102
+ ```
103
+
104
+ <!-- prompt-template end -->
105
+
106
+
107
+ <!-- README_AWQ.md-provided-files start -->
108
+ ## Provided files, and AWQ parameters
109
+
110
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
111
+
112
+ Models are released as sharded safetensors files.
113
+
114
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
115
+ | ------ | ---- | -- | ----------- | ------- | ---- |
116
+ | [main](https://huggingface.co/TheBloke/smol-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
117
+
118
+ <!-- README_AWQ.md-provided-files end -->
119
+
120
+ <!-- README_AWQ.md-text-generation-webui start -->
121
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
122
+
123
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
124
+
125
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
126
+
127
+ 1. Click the **Model tab**.
128
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/smol-7B-AWQ`.
129
+ 3. Click **Download**.
130
+ 4. The model will start downloading. Once it's finished it will say "Done".
131
+ 5. In the top left, click the refresh icon next to **Model**.
132
+ 6. In the **Model** dropdown, choose the model you just downloaded: `smol-7B-AWQ`
133
+ 7. Select **Loader: AutoAWQ**.
134
+ 8. Click Load, and the model will load and is now ready for use.
135
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
136
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
137
+ <!-- README_AWQ.md-text-generation-webui end -->
138
+
139
+ <!-- README_AWQ.md-use-from-vllm start -->
140
+ ## Multi-user inference server: vLLM
141
+
142
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
143
+
144
+ - Please ensure you are using vLLM version 0.2 or later.
145
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
146
+
147
+ For example:
148
+
149
+ ```shell
150
+ python3 -m vllm.entrypoints.api_server --model TheBloke/smol-7B-AWQ --quantization awq --dtype auto
151
+ ```
152
+
153
+ - When using vLLM from Python code, again set `quantization=awq`.
154
+
155
+ For example:
156
+
157
+ ```python
158
+ from vllm import LLM, SamplingParams
159
+
160
+ prompts = [
161
+ "Tell me about AI",
162
+ "Write a story about llamas",
163
+ "What is 291 - 150?",
164
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
165
+ ]
166
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
167
+ '''
168
+
169
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
170
+
171
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
172
+
173
+ llm = LLM(model="TheBloke/smol-7B-AWQ", quantization="awq", dtype="auto")
174
+
175
+ outputs = llm.generate(prompts, sampling_params)
176
+
177
+ # Print the outputs.
178
+ for output in outputs:
179
+ prompt = output.prompt
180
+ generated_text = output.outputs[0].text
181
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
182
+ ```
183
+ <!-- README_AWQ.md-use-from-vllm start -->
184
+
185
+ <!-- README_AWQ.md-use-from-tgi start -->
186
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
187
+
188
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
189
+
190
+ Example Docker parameters:
191
+
192
+ ```shell
193
+ --model-id TheBloke/smol-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
194
+ ```
195
+
196
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
197
+
198
+ ```shell
199
+ pip3 install huggingface-hub
200
+ ```
201
+
202
+ ```python
203
+ from huggingface_hub import InferenceClient
204
+
205
+ endpoint_url = "https://your-endpoint-url-here"
206
+
207
+ prompt = "Tell me about AI"
208
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
209
+ '''
210
+
211
+ client = InferenceClient(endpoint_url)
212
+ response = client.text_generation(prompt,
213
+ max_new_tokens=128,
214
+ do_sample=True,
215
+ temperature=0.7,
216
+ top_p=0.95,
217
+ top_k=40,
218
+ repetition_penalty=1.1)
219
+
220
+ print(f"Model output: ", response)
221
+ ```
222
+ <!-- README_AWQ.md-use-from-tgi end -->
223
+
224
+ <!-- README_AWQ.md-use-from-python start -->
225
+ ## Inference from Python code using Transformers
226
+
227
+ ### Install the necessary packages
228
+
229
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
230
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
231
+
232
+ ```shell
233
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
234
+ ```
235
+
236
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
237
+
238
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
239
+
240
+ ```shell
241
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
242
+ ```
243
+
244
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
245
+
246
+ ```shell
247
+ pip3 uninstall -y autoawq
248
+ git clone https://github.com/casper-hansen/AutoAWQ
249
+ cd AutoAWQ
250
+ pip3 install .
251
+ ```
252
+
253
+ ### Transformers example code (requires Transformers 4.35.0 and later)
254
+
255
+ ```python
256
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
257
+
258
+ model_name_or_path = "TheBloke/smol-7B-AWQ"
259
+
260
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
261
+ model = AutoModelForCausalLM.from_pretrained(
262
+ model_name_or_path,
263
+ low_cpu_mem_usage=True,
264
+ device_map="cuda:0"
265
+ )
266
+
267
+ # Using the text streamer to stream output one token at a time
268
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
269
+
270
+ prompt = "Tell me about AI"
271
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
272
+ '''
273
+
274
+ # Convert prompt to tokens
275
+ tokens = tokenizer(
276
+ prompt_template,
277
+ return_tensors='pt'
278
+ ).input_ids.cuda()
279
+
280
+ generation_params = {
281
+ "do_sample": True,
282
+ "temperature": 0.7,
283
+ "top_p": 0.95,
284
+ "top_k": 40,
285
+ "max_new_tokens": 512,
286
+ "repetition_penalty": 1.1
287
+ }
288
+
289
+ # Generate streamed output, visible one token at a time
290
+ generation_output = model.generate(
291
+ tokens,
292
+ streamer=streamer,
293
+ **generation_params
294
+ )
295
+
296
+ # Generation without a streamer, which will include the prompt in the output
297
+ generation_output = model.generate(
298
+ tokens,
299
+ **generation_params
300
+ )
301
+
302
+ # Get the tokens from the output, decode them, print them
303
+ token_output = generation_output[0]
304
+ text_output = tokenizer.decode(token_output)
305
+ print("model.generate output: ", text_output)
306
+
307
+ # Inference is also possible via Transformers' pipeline
308
+ from transformers import pipeline
309
+
310
+ pipe = pipeline(
311
+ "text-generation",
312
+ model=model,
313
+ tokenizer=tokenizer,
314
+ **generation_params
315
+ )
316
+
317
+ pipe_output = pipe(prompt_template)[0]['generated_text']
318
+ print("pipeline output: ", pipe_output)
319
+
320
+ ```
321
+ <!-- README_AWQ.md-use-from-python end -->
322
+
323
+ <!-- README_AWQ.md-compatibility start -->
324
+ ## Compatibility
325
+
326
+ The files provided are tested to work with:
327
+
328
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
329
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
330
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
331
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
332
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
333
+
334
+ <!-- README_AWQ.md-compatibility end -->
335
+
336
+ <!-- footer start -->
337
+ <!-- 200823 -->
338
+ ## Discord
339
+
340
+ For further support, and discussions on these models and AI in general, join us at:
341
+
342
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
343
+
344
+ ## Thanks, and how to contribute
345
+
346
+ Thanks to the [chirper.ai](https://chirper.ai) team!
347
+
348
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
349
+
350
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
351
+
352
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
353
+
354
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
355
+
356
+ * Patreon: https://patreon.com/TheBlokeAI
357
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
358
+
359
+ **Special thanks to**: Aemon Algiz.
360
+
361
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
362
+
363
+
364
+ Thank you to all my generous patrons and donaters!
365
+
366
+ And thank you again to a16z for their generous grant.
367
+
368
+ <!-- footer end -->
369
+
370
+ # Original model card: Rishiraj Acharya's Smol 7B
371
+
372
+
373
+ # Smol 7B
374
+
375
+ This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook).
376
+
377
+ ## Model date
378
+
379
+ rishiraj/smol-7b was trained between 1st and 3rd December, 2023.
380
+
381
+ ## Evaluation
382
+
383
+ It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu).
384
+
385
+ | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
386
+ | ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- |
387
+ | **rishiraj/smol-7b** | **67.11** | **63.74** | **84.77** | **65** | **46.17** | **80.66** | **62.32** |
388
+ | argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 |
389
+ | Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 |
390
+ | HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 |
391
+ | Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 |
392
+ | microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 |
393
+ | 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 |
394
+
395
+ ## Inference procedure
396
+
397
+ Here's how you can run the model using the pipeline() function from 🤗 Transformers:
398
+
399
+ ```
400
+ import torch
401
+ from transformers import pipeline
402
+
403
+ pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto")
404
+
405
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
406
+ messages = [
407
+ {
408
+ "role": "system",
409
+ "content": "You are a friendly chatbot who always responds in the style of a pirate"
410
+ },
411
+ {
412
+ "role": "user",
413
+ "content": "How many helicopters can a human eat in one sitting?"
414
+ }
415
+ ]
416
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
417
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
418
+ print(outputs[0]["generated_text"])
419
+ ```
420
+
421
+ ## Training procedure
422
+
423
+ ### Training hyperparameters
424
+
425
+ The following hyperparameters were used during training:
426
+ - learning_rate: 2e-05
427
+ - train_batch_size: 4
428
+ - eval_batch_size: 8
429
+ - seed: 42
430
+ - distributed_type: multi-GPU
431
+ - gradient_accumulation_steps: 128
432
+ - total_train_batch_size: 512
433
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
434
+ - lr_scheduler_type: cosine
435
+ - num_epochs: 1
436
+
437
+ ### Training results
438
+
439
+ | Training Loss | Epoch | Step | Validation Loss |
440
+ |:-------------:|:-----:|:----:|:---------------:|
441
+ | 2.0569 | 0.16 | 3 | 2.0409 |
442
+
443
+
444
+ ### Framework versions
445
+
446
+ - Transformers 4.35.2
447
+ - Pytorch 2.1.1+cu121
448
+ - Datasets 2.14.6
449
+ - Tokenizers 0.14.1
450
+
451
+ ## Citation Information
452
+
453
+ ```
454
+ @misc{rishiraj2023smol,
455
+ author = {Rishiraj Acharya},
456
+ title = {Smol 7B},
457
+ year = {2023},
458
+ publisher = {Hugging Face},
459
+ journal = {Hugging Face repository},
460
+ howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}}
461
+ }
462
+ ```