--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: electra-base-fp16 results: [] --- # electra-base-fp16 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3364 - Accuracy: 0.8873 - Precision: 0.8903 - Recall: 0.8835 - F1: 0.8869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3204 | 1.0 | 1074 | 0.2991 | 0.8777 | 0.8868 | 0.8660 | 0.8763 | | 0.2293 | 2.0 | 2148 | 0.3006 | 0.8884 | 0.8926 | 0.8832 | 0.8879 | | 0.1761 | 3.0 | 3222 | 0.3364 | 0.8873 | 0.8903 | 0.8835 | 0.8869 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0