File size: 8,420 Bytes
f3b36f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251f723
f3b36f3
 
 
 
251f723
f3b36f3
 
 
 
 
 
 
 
 
251f723
 
 
 
 
 
 
 
f3b36f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251f723
 
 
 
 
 
 
 
f3b36f3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-sep_tok
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: essays_su_g
      type: essays_su_g
      config: sep_tok
      split: train[80%:100%]
      args: sep_tok
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8985356000673287
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-sep_tok

This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2583
- Claim: {'precision': 0.6372016071850626, 'recall': 0.6468330134357005, 'f1-score': 0.6419811882366948, 'support': 4168.0}
- Majorclaim: {'precision': 0.892292490118577, 'recall': 0.8392193308550185, 'f1-score': 0.8649425287356322, 'support': 2152.0}
- O: {'precision': 1.0, 'recall': 0.9997347949080623, 'f1-score': 0.9998673798682641, 'support': 11312.0}
- Premise: {'precision': 0.8961370562556626, 'recall': 0.9011844611944008, 'f1-score': 0.8986536714297514, 'support': 12073.0}
- Accuracy: 0.8985
- Macro avg: {'precision': 0.8564077883898256, 'recall': 0.8467429000982954, 'f1-score': 0.8513611920675855, 'support': 29705.0}
- Weighted avg: {'precision': 0.8990786876841317, 'recall': 0.8985356000673287, 'f1-score': 0.8987402622673225, 'support': 29705.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Claim                                                                                                                 | Majorclaim                                                                                                         | O                                                                                                                   | Premise                                                                                                             | Accuracy | Macro avg                                                                                                           | Weighted avg                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 41   | 0.3743          | {'precision': 0.43195876288659796, 'recall': 0.30158349328214973, 'f1-score': 0.35518508053122355, 'support': 4168.0} | {'precision': 0.6687344913151365, 'recall': 0.5009293680297398, 'f1-score': 0.5727948990435707, 'support': 2152.0} | {'precision': 0.9990991802540312, 'recall': 0.980463224893918, 'f1-score': 0.9896934814616517, 'support': 11312.0}  | {'precision': 0.8109643516545946, 'recall': 0.9459123664375052, 'f1-score': 0.8732555916650737, 'support': 12073.0} | 0.8364   | {'precision': 0.72768919652759, 'recall': 0.6822221131608281, 'f1-score': 0.69773226317538, 'support': 29705.0}     | {'precision': 0.8191248373533424, 'recall': 0.836424844302306, 'f1-score': 0.8231372987329588, 'support': 29705.0}  |
| No log        | 2.0   | 82   | 0.2730          | {'precision': 0.5999298737727911, 'recall': 0.41050863723608444, 'f1-score': 0.4874643874643875, 'support': 4168.0}   | {'precision': 0.749693752552062, 'recall': 0.8531598513011153, 'f1-score': 0.7980873723103673, 'support': 2152.0}  | {'precision': 0.9993805309734514, 'recall': 0.9983203677510608, 'f1-score': 0.9988501680523616, 'support': 11312.0} | {'precision': 0.8544719169719169, 'recall': 0.9274413981611861, 'f1-score': 0.8894626047583112, 'support': 12073.0} | 0.8765   | {'precision': 0.8008690185675553, 'recall': 0.7973575636123617, 'f1-score': 0.7934661331463568, 'support': 29705.0} | {'precision': 0.8663484493974304, 'recall': 0.8765191045278573, 'f1-score': 0.8680932745470084, 'support': 29705.0} |
| No log        | 3.0   | 123  | 0.2507          | {'precision': 0.6004319654427646, 'recall': 0.6002879078694817, 'f1-score': 0.6003599280143971, 'support': 4168.0}    | {'precision': 0.7873417721518987, 'recall': 0.8671003717472119, 'f1-score': 0.825298540468819, 'support': 2152.0}  | {'precision': 0.9997347480106101, 'recall': 0.999557991513437, 'f1-score': 0.9996463619485456, 'support': 11312.0}  | {'precision': 0.8981278461797942, 'recall': 0.8821336867390044, 'f1-score': 0.8900589193932557, 'support': 12073.0} | 0.8862   | {'precision': 0.8214090829462669, 'recall': 0.8372699894672837, 'f1-score': 0.8288409374562543, 'support': 29705.0} | {'precision': 0.8870243017021042, 'recall': 0.8862144420131292, 'f1-score': 0.8864508877040778, 'support': 29705.0} |
| No log        | 4.0   | 164  | 0.2533          | {'precision': 0.6344515441959532, 'recall': 0.5717370441458733, 'f1-score': 0.6014639071176174, 'support': 4168.0}    | {'precision': 0.9013713080168776, 'recall': 0.7941449814126395, 'f1-score': 0.8443675889328064, 'support': 2152.0} | {'precision': 0.9999115904871364, 'recall': 0.9998231966053748, 'f1-score': 0.9998673915926268, 'support': 11312.0} | {'precision': 0.8741170930780098, 'recall': 0.9225544603661062, 'f1-score': 0.8976828531130365, 'support': 12073.0} | 0.8935   | {'precision': 0.8524628839444942, 'recall': 0.8220649206324984, 'f1-score': 0.8358454351890219, 'support': 29705.0} | {'precision': 0.8903673007029912, 'recall': 0.8934522807608147, 'f1-score': 0.8911700264460231, 'support': 29705.0} |
| No log        | 5.0   | 205  | 0.2560          | {'precision': 0.6261571326845479, 'recall': 0.6329174664107485, 'f1-score': 0.6295191504593723, 'support': 4168.0}    | {'precision': 0.8881709741550696, 'recall': 0.8303903345724907, 'f1-score': 0.8583093179634967, 'support': 2152.0} | {'precision': 1.0, 'recall': 0.9990275813295615, 'f1-score': 0.9995135541502675, 'support': 11312.0}                | {'precision': 0.8916988258477707, 'recall': 0.8995278721113228, 'f1-score': 0.8955962394854031, 'support': 12073.0} | 0.8950   | {'precision': 0.8515067331718471, 'recall': 0.8404658136060308, 'f1-score': 0.8457345655146349, 'support': 29705.0} | {'precision': 0.8954265877754937, 'recall': 0.8950008416091567, 'f1-score': 0.8951337550993843, 'support': 29705.0} |
| No log        | 6.0   | 246  | 0.2583          | {'precision': 0.6372016071850626, 'recall': 0.6468330134357005, 'f1-score': 0.6419811882366948, 'support': 4168.0}    | {'precision': 0.892292490118577, 'recall': 0.8392193308550185, 'f1-score': 0.8649425287356322, 'support': 2152.0}  | {'precision': 1.0, 'recall': 0.9997347949080623, 'f1-score': 0.9998673798682641, 'support': 11312.0}                | {'precision': 0.8961370562556626, 'recall': 0.9011844611944008, 'f1-score': 0.8986536714297514, 'support': 12073.0} | 0.8985   | {'precision': 0.8564077883898256, 'recall': 0.8467429000982954, 'f1-score': 0.8513611920675855, 'support': 29705.0} | {'precision': 0.8990786876841317, 'recall': 0.8985356000673287, 'f1-score': 0.8987402622673225, 'support': 29705.0} |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2