Theoreticallyhugo commited on
Commit
0118bd9
1 Parent(s): 2a57c1b

trainer: training complete at 2024-03-02 14:40:06.618816.

Browse files
README.md CHANGED
@@ -17,12 +17,12 @@ model-index:
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
- split: train[20%:40%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9141753288565909
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.4313
36
- - Claim: {'precision': 0.6927914852443154, 'recall': 0.6577859439595773, 'f1-score': 0.6748350612629594, 'support': 4354.0}
37
- - Majorclaim: {'precision': 0.9005037783375315, 'recall': 0.913154533844189, 'f1-score': 0.9067850348763474, 'support': 2349.0}
38
- - O: {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0}
39
- - Premise: {'precision': 0.9048672566371682, 'recall': 0.9174517720951099, 'f1-score': 0.9111160614836266, 'support': 13374.0}
40
- - Accuracy: 0.9142
41
- - Macro avg: {'precision': 0.8745007481053241, 'recall': 0.8720781199093074, 'f1-score': 0.873154126750686, 'support': 32613.0}
42
- - Weighted avg: {'precision': 0.9127462162898813, 'recall': 0.9141753288565909, 'f1-score': 0.9133792098172753, 'support': 32613.0}
43
 
44
  ## Model description
45
 
@@ -70,22 +70,22 @@ The following hyperparameters were used during training:
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.3274 | {'precision': 0.5337112171837709, 'recall': 0.4108865411116215, 'f1-score': 0.4643135219309629, 'support': 4354.0} | {'precision': 0.6779310344827586, 'recall': 0.8369518944231588, 'f1-score': 0.7490950657268052, 'support': 2349.0} | {'precision': 0.9961064759634486, 'recall': 1.0, 'f1-score': 0.9980494407069782, 'support': 12536.0} | {'precision': 0.868321718931475, 'recall': 0.8944220128607746, 'f1-score': 0.8811786372007365, 'support': 13374.0} | 0.8663 | {'precision': 0.7690176116403633, 'recall': 0.7855651120988888, 'f1-score': 0.7731591663913707, 'support': 32613.0} | {'precision': 0.8590551035257559, 'recall': 0.8663109802839358, 'f1-score': 0.8609350954068932, 'support': 32613.0} |
74
- | No log | 2.0 | 82 | 0.2487 | {'precision': 0.6105208603265094, 'recall': 0.5411116214974736, 'f1-score': 0.5737245829782053, 'support': 4354.0} | {'precision': 0.8533737024221453, 'recall': 0.8399318859088974, 'f1-score': 0.8465994421797898, 'support': 2349.0} | {'precision': 0.9999201915403033, 'recall': 0.9994416081684748, 'f1-score': 0.9996808425756004, 'support': 12536.0} | {'precision': 0.8785221391604371, 'recall': 0.9138627187079408, 'f1-score': 0.8958440225756799, 'support': 13374.0} | 0.8917 | {'precision': 0.8355842233623487, 'recall': 0.8235869585706966, 'f1-score': 0.8289622225773189, 'support': 32613.0} | {'precision': 0.8875950468565349, 'recall': 0.8916689663631068, 'f1-score': 0.8892060198210008, 'support': 32613.0} |
75
- | No log | 3.0 | 123 | 0.2409 | {'precision': 0.648193359375, 'recall': 0.6097841065686724, 'f1-score': 0.6284023668639053, 'support': 4354.0} | {'precision': 0.8872870249017037, 'recall': 0.8646232439335888, 'f1-score': 0.8758085381630012, 'support': 2349.0} | {'precision': 0.9997607464710104, 'recall': 1.0, 'f1-score': 0.9998803589232302, 'support': 12536.0} | {'precision': 0.8920300971583023, 'recall': 0.9130402273067145, 'f1-score': 0.9024128884454791, 'support': 13374.0} | 0.9025 | {'precision': 0.8568178069765041, 'recall': 0.8468618944522439, 'f1-score': 0.8516260380989039, 'support': 32613.0} | {'precision': 0.900545253284536, 'recall': 0.9024928709410358, 'f1-score': 0.9013800727011249, 'support': 32613.0} |
76
- | No log | 4.0 | 164 | 0.2301 | {'precision': 0.6427889207258835, 'recall': 0.6182820395039045, 'f1-score': 0.6302973542495903, 'support': 4354.0} | {'precision': 0.8526522593320236, 'recall': 0.9237973605789698, 'f1-score': 0.8868001634654679, 'support': 2349.0} | {'precision': 0.9997606510292005, 'recall': 0.9996011486917677, 'f1-score': 0.999680893498205, 'support': 12536.0} | {'precision': 0.9004945301963135, 'recall': 0.8986092418124719, 'f1-score': 0.8995508982035928, 'support': 13374.0} | 0.9018 | {'precision': 0.8489240903208553, 'recall': 0.8600724476467785, 'f1-score': 0.854082327354214, 'support': 32613.0} | {'precision': 0.9008001866175751, 'recall': 0.9018182933186153, 'f1-score': 0.9011744291494633, 'support': 32613.0} |
77
- | No log | 5.0 | 205 | 0.2631 | {'precision': 0.6787741203178207, 'recall': 0.5493798805695912, 'f1-score': 0.6072607260726073, 'support': 4354.0} | {'precision': 0.9056947608200455, 'recall': 0.8463175819497658, 'f1-score': 0.875, 'support': 2349.0} | {'precision': 0.9997607273887382, 'recall': 0.9999202297383536, 'f1-score': 0.9998404722022812, 'support': 12536.0} | {'precision': 0.8748955140707718, 'recall': 0.9391356363092568, 'f1-score': 0.9058781103498017, 'support': 13374.0} | 0.9038 | {'precision': 0.864781280649344, 'recall': 0.8336883321417418, 'f1-score': 0.8469948271561726, 'support': 32613.0} | {'precision': 0.8989271945775551, 'recall': 0.903780700947475, 'f1-score': 0.899905013603967, 'support': 32613.0} |
78
- | No log | 6.0 | 246 | 0.2843 | {'precision': 0.7390988372093024, 'recall': 0.467156637574644, 'f1-score': 0.57247396566282, 'support': 4354.0} | {'precision': 0.886744966442953, 'recall': 0.8999574286930608, 'f1-score': 0.8933023452355799, 'support': 2349.0} | {'precision': 0.9996809952946806, 'recall': 0.9999202297383536, 'f1-score': 0.9998005982053838, 'support': 12536.0} | {'precision': 0.8590842147543178, 'recall': 0.9595483774487812, 'f1-score': 0.9065413958745407, 'support': 13374.0} | 0.9050 | {'precision': 0.8711522534253133, 'recall': 0.8316456683637099, 'f1-score': 0.8430295762445812, 'support': 32613.0} | {'precision': 0.8991013862116997, 'recall': 0.9050378683347131, 'f1-score': 0.896835733694634, 'support': 32613.0} |
79
- | No log | 7.0 | 287 | 0.2983 | {'precision': 0.6895514223194749, 'recall': 0.5790078089113458, 'f1-score': 0.6294631710362047, 'support': 4354.0} | {'precision': 0.8248984115256742, 'recall': 0.9506172839506173, 'f1-score': 0.8833069620253163, 'support': 2349.0} | {'precision': 0.9992028061224489, 'recall': 0.9998404594767071, 'f1-score': 0.9995215311004785, 'support': 12536.0} | {'precision': 0.8964686998394864, 'recall': 0.9187228951697323, 'f1-score': 0.9074593796159526, 'support': 13374.0} | 0.9068 | {'precision': 0.8525303349517711, 'recall': 0.8620471118771007, 'f1-score': 0.854937760944488, 'support': 32613.0} | {'precision': 0.9031788559978264, 'recall': 0.9068469628675682, 'f1-score': 0.9039933265062536, 'support': 32613.0} |
80
- | No log | 8.0 | 328 | 0.3043 | {'precision': 0.6570592208961945, 'recall': 0.6701883325677538, 'f1-score': 0.6635588402501421, 'support': 4354.0} | {'precision': 0.8852592895059208, 'recall': 0.9229459344401874, 'f1-score': 0.9037098791162985, 'support': 2349.0} | {'precision': 0.9996012441183507, 'recall': 0.9998404594767071, 'f1-score': 0.9997208374875374, 'support': 12536.0} | {'precision': 0.9098907766990292, 'recall': 0.8969642590100194, 'f1-score': 0.9033812787107464, 'support': 13374.0} | 0.9081 | {'precision': 0.8629526328048738, 'recall': 0.8724847463736669, 'f1-score': 0.8675927088911811, 'support': 32613.0} | {'precision': 0.9088458701337473, 'recall': 0.9081041302548064, 'f1-score': 0.9084190763411705, 'support': 32613.0} |
81
- | No log | 9.0 | 369 | 0.3104 | {'precision': 0.6748837209302325, 'recall': 0.6665135507579237, 'f1-score': 0.6706725213773977, 'support': 4354.0} | {'precision': 0.9106310885218127, 'recall': 0.9152830991911451, 'f1-score': 0.9129511677282377, 'support': 2349.0} | {'precision': 0.9996012123145638, 'recall': 0.9997606892150607, 'f1-score': 0.9996809444045626, 'support': 12536.0} | {'precision': 0.9039063664827792, 'recall': 0.9066098399880365, 'f1-score': 0.9052560848140958, 'support': 13374.0} | 0.9110 | {'precision': 0.8722555970623471, 'recall': 0.8720417947880416, 'f1-score': 0.8721401795810735, 'support': 32613.0} | {'precision': 0.9105988621342419, 'recall': 0.910986416459694, 'f1-score': 0.9107878958829343, 'support': 32613.0} |
82
- | No log | 10.0 | 410 | 0.3317 | {'precision': 0.657001414427157, 'recall': 0.6401010564997703, 'f1-score': 0.6484411354118194, 'support': 4354.0} | {'precision': 0.8625536899648575, 'recall': 0.9404001702852277, 'f1-score': 0.8997963340122199, 'support': 2349.0} | {'precision': 0.999680969851651, 'recall': 0.9998404594767071, 'f1-score': 0.9997607083034219, 'support': 12536.0} | {'precision': 0.905666063893912, 'recall': 0.898758785703604, 'f1-score': 0.9021992043833972, 'support': 13374.0} | 0.9061 | {'precision': 0.8562255345343944, 'recall': 0.8697751179913272, 'f1-score': 0.8625493455277146, 'support': 32613.0} | {'precision': 0.905500915362609, 'recall': 0.9060803973875449, 'f1-score': 0.9056494861218845, 'support': 32613.0} |
83
- | No log | 11.0 | 451 | 0.3783 | {'precision': 0.6712632356562424, 'recall': 0.6260909508497933, 'f1-score': 0.6478906714200832, 'support': 4354.0} | {'precision': 0.8602825745682888, 'recall': 0.9331630481055768, 'f1-score': 0.8952419848887073, 'support': 2349.0} | {'precision': 0.999680969851651, 'recall': 0.9998404594767071, 'f1-score': 0.9997607083034219, 'support': 12536.0} | {'precision': 0.9027922174365067, 'recall': 0.9090025422461493, 'f1-score': 0.9058867362146051, 'support': 13374.0} | 0.9079 | {'precision': 0.8585047493781722, 'recall': 0.8670242501695566, 'f1-score': 0.8621950252067043, 'support': 32613.0} | {'precision': 0.9060628476302188, 'recall': 0.9078894919203998, 'f1-score': 0.9067601525554976, 'support': 32613.0} |
84
- | No log | 12.0 | 492 | 0.4069 | {'precision': 0.6924342105263158, 'recall': 0.5801561782269178, 'f1-score': 0.6313421644588852, 'support': 4354.0} | {'precision': 0.8779304769603881, 'recall': 0.9246487867177522, 'f1-score': 0.9006842214389384, 'support': 2349.0} | {'precision': 0.9996809952946806, 'recall': 0.9999202297383536, 'f1-score': 0.9998005982053838, 'support': 12536.0} | {'precision': 0.8889048165137615, 'recall': 0.927321668909825, 'f1-score': 0.9077069457659372, 'support': 13374.0} | 0.9087 | {'precision': 0.8647376248237866, 'recall': 0.8580117158982121, 'f1-score': 0.8598834824672862, 'support': 32613.0} | {'precision': 0.9044654345224509, 'recall': 0.908686720019624, 'f1-score': 0.905704596694275, 'support': 32613.0} |
85
- | 0.1707 | 13.0 | 533 | 0.3896 | {'precision': 0.6659044134461468, 'recall': 0.6688102893890675, 'f1-score': 0.667354188151713, 'support': 4354.0} | {'precision': 0.8783068783068783, 'recall': 0.918688803746275, 'f1-score': 0.8980441115272575, 'support': 2349.0} | {'precision': 0.9998404849258254, 'recall': 1.0, 'f1-score': 0.9999202361011406, 'support': 12536.0} | {'precision': 0.9120422801057002, 'recall': 0.9032451024375654, 'f1-score': 0.9076223749953041, 'support': 13374.0} | 0.9103 | {'precision': 0.8640235141961377, 'recall': 0.8726860488932269, 'f1-score': 0.8682352276938539, 'support': 32613.0} | {'precision': 0.9105002436590061, 'recall': 0.9102505135988717, 'f1-score': 0.9103335319087843, 'support': 32613.0} |
86
- | 0.1707 | 14.0 | 574 | 0.4518 | {'precision': 0.6987791932059448, 'recall': 0.6047312815801562, 'f1-score': 0.6483624722974637, 'support': 4354.0} | {'precision': 0.8978132884777124, 'recall': 0.9088974031502767, 'f1-score': 0.9033213454622383, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.8916008614501076, 'recall': 0.9286675639300135, 'f1-score': 0.9097568121886903, 'support': 13374.0} | 0.9114 | {'precision': 0.8720084538340115, 'recall': 0.8605541195997, 'f1-score': 0.8653302448320508, 'support': 32613.0} | {'precision': 0.9079115108212787, 'recall': 0.9113850305093061, 'f1-score': 0.9090381047714349, 'support': 32613.0} |
87
- | 0.1707 | 15.0 | 615 | 0.4267 | {'precision': 0.6925925925925925, 'recall': 0.6442351860358291, 'f1-score': 0.6675392670157068, 'support': 4354.0} | {'precision': 0.904277848369335, 'recall': 0.9088974031502767, 'f1-score': 0.9065817409766455, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.9008415660446396, 'recall': 0.9204426499177508, 'f1-score': 0.9105366322719035, 'support': 13374.0} | 0.9133 | {'precision': 0.8743881198022121, 'recall': 0.8683738672105525, 'f1-score': 0.8711344974110167, 'support': 32613.0} | {'precision': 0.911340633421535, 'recall': 0.9132861128997639, 'f1-score': 0.9121529285245232, 'support': 32613.0} |
88
- | 0.1707 | 16.0 | 656 | 0.4313 | {'precision': 0.6927914852443154, 'recall': 0.6577859439595773, 'f1-score': 0.6748350612629594, 'support': 4354.0} | {'precision': 0.9005037783375315, 'recall': 0.913154533844189, 'f1-score': 0.9067850348763474, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.9048672566371682, 'recall': 0.9174517720951099, 'f1-score': 0.9111160614836266, 'support': 13374.0} | 0.9142 | {'precision': 0.8745007481053241, 'recall': 0.8720781199093074, 'f1-score': 0.873154126750686, 'support': 32613.0} | {'precision': 0.9127462162898813, 'recall': 0.9141753288565909, 'f1-score': 0.9133792098172753, 'support': 32613.0} |
89
 
90
 
91
  ### Framework versions
 
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
+ split: train[40%:60%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9137861922234899
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4085
36
+ - Claim: {'precision': 0.6911519198664441, 'recall': 0.7267939433838051, 'f1-score': 0.708524975933255, 'support': 4557.0}
37
+ - Majorclaim: {'precision': 0.8940252943741823, 'recall': 0.9034817100044072, 'f1-score': 0.8987286277948269, 'support': 2269.0}
38
+ - O: {'precision': 0.9999095350099512, 'recall': 0.9983741306115076, 'f1-score': 0.9991412429378531, 'support': 11071.0}
39
+ - Premise: {'precision': 0.9249930030786454, 'recall': 0.9095913031512316, 'f1-score': 0.9172275029487268, 'support': 14534.0}
40
+ - Accuracy: 0.9138
41
+ - Macro avg: {'precision': 0.8775199380823058, 'recall': 0.8845602717877379, 'f1-score': 0.8809055874036654, 'support': 32431.0}
42
+ - Weighted avg: {'precision': 0.9155428281769482, 'recall': 0.9137861922234899, 'f1-score': 0.914570651543772, 'support': 32431.0}
43
 
44
  ## Model description
45
 
 
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3528 | {'precision': 0.5627967198964178, 'recall': 0.5723063418915953, 'f1-score': 0.5675116962245675, 'support': 4557.0} | {'precision': 0.7071971390254805, 'recall': 0.6972234464521816, 'f1-score': 0.7021748779405237, 'support': 2269.0} | {'precision': 0.9985252096967463, 'recall': 0.9785023936410442, 'f1-score': 0.9884124087591241, 'support': 11071.0} | {'precision': 0.8892665352457345, 'recall': 0.900096325856612, 'f1-score': 0.8946486578902376, 'support': 14534.0} | 0.8666 | {'precision': 0.7894464009660948, 'recall': 0.7870321269603583, 'f1-score': 0.7881869102036132, 'support': 32431.0} | {'precision': 0.8679524954775053, 'recall': 0.8666091085689618, 'f1-score': 0.8672234272421873, 'support': 32431.0} |
74
+ | No log | 2.0 | 82 | 0.2667 | {'precision': 0.7048665620094191, 'recall': 0.4926486723721747, 'f1-score': 0.5799535003874967, 'support': 4557.0} | {'precision': 0.8561310314298363, 'recall': 0.8523578669017188, 'f1-score': 0.8542402826855124, 'support': 2269.0} | {'precision': 0.9996358670914884, 'recall': 0.9918706530575377, 'f1-score': 0.9957381211461733, 'support': 11071.0} | {'precision': 0.8665166854143233, 'recall': 0.954038805559378, 'f1-score': 0.9081739586062353, 'support': 14534.0} | 0.8950 | {'precision': 0.8567875364862668, 'recall': 0.8227289994727023, 'f1-score': 0.8345264657063545, 'support': 32431.0} | {'precision': 0.8885190226564973, 'recall': 0.8950078628472757, 'f1-score': 0.8881729319562012, 'support': 32431.0} |
75
+ | No log | 3.0 | 123 | 0.2512 | {'precision': 0.6279952076677316, 'recall': 0.6901470265525566, 'f1-score': 0.6576058546785155, 'support': 4557.0} | {'precision': 0.7716945996275605, 'recall': 0.9131776112825033, 'f1-score': 0.836495761001211, 'support': 2269.0} | {'precision': 0.9997280638143582, 'recall': 0.9962063047601842, 'f1-score': 0.997964077274578, 'support': 11071.0} | {'precision': 0.9338246023639282, 'recall': 0.8806247419843126, 'f1-score': 0.9064447592067989, 'support': 14534.0} | 0.8956 | {'precision': 0.8333106183683946, 'recall': 0.8700389211448892, 'f1-score': 0.8496276130402758, 'support': 32431.0} | {'precision': 0.9020056542549684, 'recall': 0.8955937220560575, 'f1-score': 0.8978276091178259, 'support': 32431.0} |
76
+ | No log | 4.0 | 164 | 0.2493 | {'precision': 0.5918265221017515, 'recall': 0.7785824007022164, 'f1-score': 0.6724791508718727, 'support': 4557.0} | {'precision': 0.9070698088039129, 'recall': 0.8990744821507272, 'f1-score': 0.9030544488711819, 'support': 2269.0} | {'precision': 1.0, 'recall': 0.9983741306115076, 'f1-score': 0.9991864039052614, 'support': 11071.0} | {'precision': 0.9359677173747526, 'recall': 0.8458098252373745, 'f1-score': 0.8886077779384126, 'support': 14534.0} | 0.8922 | {'precision': 0.8587160120701043, 'recall': 0.8804602096754564, 'f1-score': 0.8658319453966822, 'support': 32431.0} | {'precision': 0.907448110194518, 'recall': 0.8921710708889643, 'f1-score': 0.8969978155839744, 'support': 32431.0} |
77
+ | No log | 5.0 | 205 | 0.2277 | {'precision': 0.7054698457223001, 'recall': 0.6622778143515471, 'f1-score': 0.6831918505942275, 'support': 4557.0} | {'precision': 0.9207650273224044, 'recall': 0.8911414720141031, 'f1-score': 0.9057110862262038, 'support': 2269.0} | {'precision': 1.0, 'recall': 0.9978321741486768, 'f1-score': 0.9989149109322725, 'support': 11071.0} | {'precision': 0.9053655264922871, 'recall': 0.9287876702903537, 'f1-score': 0.9169270479554409, 'support': 14534.0} | 0.9123 | {'precision': 0.8829000998842478, 'recall': 0.8700097827011701, 'f1-score': 0.8761862239270362, 'support': 32431.0} | {'precision': 0.9106603094566913, 'recall': 0.912275292158737, 'f1-score': 0.9112876078974042, 'support': 32431.0} |
78
+ | No log | 6.0 | 246 | 0.2558 | {'precision': 0.6772561715904493, 'recall': 0.7344744349352644, 'f1-score': 0.7047057585008949, 'support': 4557.0} | {'precision': 0.9172320217096337, 'recall': 0.8937858087263112, 'f1-score': 0.9053571428571427, 'support': 2269.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | {'precision': 0.9226713532513181, 'recall': 0.9030549057382689, 'f1-score': 0.9127577454014394, 'support': 14534.0} | 0.9112 | {'precision': 0.8792672683441743, 'recall': 0.8823997384835534, 'f1-score': 0.880479162774664, 'support': 32431.0} | {'precision': 0.9141734652287734, 'recall': 0.9112269125219697, 'f1-score': 0.9124791845559805, 'support': 32431.0} |
79
+ | No log | 7.0 | 287 | 0.2902 | {'precision': 0.7137206427688504, 'recall': 0.6335308316875137, 'f1-score': 0.671239246686817, 'support': 4557.0} | {'precision': 0.9082039911308204, 'recall': 0.9026002644336713, 'f1-score': 0.9053934571175951, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.8983152029716105, 'recall': 0.9318150543553048, 'f1-score': 0.9147585275244849, 'support': 14534.0} | 0.9106 | {'precision': 0.8800373450161016, 'recall': 0.8666026517912839, 'f1-score': 0.872644427194061, 'support': 32431.0} | {'precision': 0.9077503480513693, 'recall': 0.910610218617989, 'f1-score': 0.9087067599584377, 'support': 32431.0} |
80
+ | No log | 8.0 | 328 | 0.3177 | {'precision': 0.7160274320548641, 'recall': 0.618608733816107, 'f1-score': 0.6637626559924652, 'support': 4557.0} | {'precision': 0.8826768318509106, 'recall': 0.9184662847069194, 'f1-score': 0.9002159827213824, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.8981960472211169, 'recall': 0.9318150543553048, 'f1-score': 0.914696744563015, 'support': 14534.0} | 0.9096 | {'precision': 0.8742024635800042, 'recall': 0.8668386323917443, 'f1-score': 0.8694654651810524, 'support': 32431.0} | {'precision': 0.906235103522757, 'recall': 0.9096235083716198, 'f1-score': 0.9072662719450809, 'support': 32431.0} |
81
+ | No log | 9.0 | 369 | 0.3188 | {'precision': 0.6808467741935483, 'recall': 0.7410577134079438, 'f1-score': 0.7096774193548386, 'support': 4557.0} | {'precision': 0.9019170753455193, 'recall': 0.8915821947994711, 'f1-score': 0.8967198581560283, 'support': 2269.0} | {'precision': 0.999909600433918, 'recall': 0.9990967392286153, 'f1-score': 0.9995030045633218, 'support': 11071.0} | {'precision': 0.927996611605252, 'recall': 0.9044997935874501, 'f1-score': 0.9160975609756098, 'support': 14534.0} | 0.9129 | {'precision': 0.8776675153945594, 'recall': 0.8840591102558701, 'f1-score': 0.8804994607624497, 'support': 32431.0} | {'precision': 0.9159930478071482, 'recall': 0.9129228207579168, 'f1-score': 0.9142091539852634, 'support': 32431.0} |
82
+ | No log | 10.0 | 410 | 0.3553 | {'precision': 0.6544131725062224, 'recall': 0.750054860653939, 'f1-score': 0.6989775051124745, 'support': 4557.0} | {'precision': 0.8812341504649197, 'recall': 0.9189070074922874, 'f1-score': 0.8996763754045308, 'support': 2269.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | {'precision': 0.933473592571097, 'recall': 0.885303426448328, 'f1-score': 0.9087506179814958, 'support': 14534.0} | 0.9074 | {'precision': 0.8672576208190016, 'recall': 0.888250182378654, 'f1-score': 0.8766816637361983, 'support': 32431.0} | {'precision': 0.9132862117518615, 'recall': 0.90737257562209, 'f1-score': 0.9095582394113776, 'support': 32431.0} |
83
+ | No log | 11.0 | 451 | 0.3296 | {'precision': 0.6971476510067114, 'recall': 0.7294272547728768, 'f1-score': 0.7129222520107238, 'support': 4557.0} | {'precision': 0.8972542072630647, 'recall': 0.8929043631555752, 'f1-score': 0.8950740004417939, 'support': 2269.0} | {'precision': 0.999909412084428, 'recall': 0.9970192394544305, 'f1-score': 0.9984622342831299, 'support': 11071.0} | {'precision': 0.9236391479883057, 'recall': 0.9129627081326545, 'f1-score': 0.9182698961937715, 'support': 14534.0} | 0.9145 | {'precision': 0.8794876045856275, 'recall': 0.8830783913788842, 'f1-score': 0.8811820957323547, 'support': 32431.0} | {'precision': 0.9160044438952304, 'recall': 0.9144645555178688, 'f1-score': 0.9151681932855632, 'support': 32431.0} |
84
+ | No log | 12.0 | 492 | 0.3576 | {'precision': 0.7129815185927411, 'recall': 0.7026552556506473, 'f1-score': 0.7077807250221043, 'support': 4557.0} | {'precision': 0.9037336932073774, 'recall': 0.8854120758043191, 'f1-score': 0.8944790739091719, 'support': 2269.0} | {'precision': 0.9995480021695896, 'recall': 0.9987354349200614, 'f1-score': 0.9991415533366468, 'support': 11071.0} | {'precision': 0.9171613783691572, 'recall': 0.9247970276592817, 'f1-score': 0.9209633766144781, 'support': 14534.0} | 0.9161 | {'precision': 0.8833561480847163, 'recall': 0.8778999485085774, 'f1-score': 0.8805911822206004, 'support': 32431.0} | {'precision': 0.9156562528245048, 'recall': 0.9160679596682186, 'f1-score': 0.9158431018263538, 'support': 32431.0} |
85
+ | 0.1716 | 13.0 | 533 | 0.3893 | {'precision': 0.7014310494362532, 'recall': 0.7098968619705947, 'f1-score': 0.7056385647289781, 'support': 4557.0} | {'precision': 0.9027531083481349, 'recall': 0.8959894226531512, 'f1-score': 0.8993585489935855, 'support': 2269.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | {'precision': 0.9189468605693019, 'recall': 0.9173661758634925, 'f1-score': 0.9181558378955342, 'support': 14534.0} | 0.9145 | {'precision': 0.8807601465218644, 'recall': 0.880496973851825, 'f1-score': 0.8806187770160975, 'support': 32431.0} | {'precision': 0.914888242453754, 'recall': 0.9144953902130677, 'f1-score': 0.9146869362377662, 'support': 32431.0} |
86
+ | 0.1716 | 14.0 | 574 | 0.4032 | {'precision': 0.6816792337477073, 'recall': 0.7340355497037525, 'f1-score': 0.7068892645815723, 'support': 4557.0} | {'precision': 0.8945295404814004, 'recall': 0.9008373732921993, 'f1-score': 0.8976723759332456, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.9270304568527918, 'recall': 0.9047062061373331, 'f1-score': 0.9157322933351906, 'support': 14534.0} | 0.9125 | {'precision': 0.8757871935687562, 'recall': 0.8845108964554826, 'f1-score': 0.8798701028243389, 'support': 32431.0} | {'precision': 0.915160155657555, 'recall': 0.9124603003299312, 'f1-score': 0.9136122735297709, 'support': 32431.0} |
87
+ | 0.1716 | 15.0 | 615 | 0.4182 | {'precision': 0.6571861964353432, 'recall': 0.760588106210226, 'f1-score': 0.7051164683145152, 'support': 4557.0} | {'precision': 0.8850574712643678, 'recall': 0.9162626707800793, 'f1-score': 0.9003897791251624, 'support': 2269.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | {'precision': 0.9354416575790622, 'recall': 0.885303426448328, 'f1-score': 0.9096822086323306, 'support': 14534.0} | 0.9085 | {'precision': 0.8693987130260175, 'recall': 0.8901095019932507, 'f1-score': 0.8785711151027968, 'support': 32431.0} | {'precision': 0.9148253313863789, 'recall': 0.9085134593444544, 'f1-score': 0.910811052364885, 'support': 32431.0} |
88
+ | 0.1716 | 16.0 | 656 | 0.4085 | {'precision': 0.6911519198664441, 'recall': 0.7267939433838051, 'f1-score': 0.708524975933255, 'support': 4557.0} | {'precision': 0.8940252943741823, 'recall': 0.9034817100044072, 'f1-score': 0.8987286277948269, 'support': 2269.0} | {'precision': 0.9999095350099512, 'recall': 0.9983741306115076, 'f1-score': 0.9991412429378531, 'support': 11071.0} | {'precision': 0.9249930030786454, 'recall': 0.9095913031512316, 'f1-score': 0.9172275029487268, 'support': 14534.0} | 0.9138 | {'precision': 0.8775199380823058, 'recall': 0.8845602717877379, 'f1-score': 0.8809055874036654, 'support': 32431.0} | {'precision': 0.9155428281769482, 'recall': 0.9137861922234899, 'f1-score': 0.914570651543772, 'support': 32431.0} |
89
 
90
 
91
  ### Framework versions
meta_data/README_s42_e16.md CHANGED
@@ -17,12 +17,12 @@ model-index:
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
- split: train[20%:40%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9141753288565909
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.4313
36
- - Claim: {'precision': 0.6927914852443154, 'recall': 0.6577859439595773, 'f1-score': 0.6748350612629594, 'support': 4354.0}
37
- - Majorclaim: {'precision': 0.9005037783375315, 'recall': 0.913154533844189, 'f1-score': 0.9067850348763474, 'support': 2349.0}
38
- - O: {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0}
39
- - Premise: {'precision': 0.9048672566371682, 'recall': 0.9174517720951099, 'f1-score': 0.9111160614836266, 'support': 13374.0}
40
- - Accuracy: 0.9142
41
- - Macro avg: {'precision': 0.8745007481053241, 'recall': 0.8720781199093074, 'f1-score': 0.873154126750686, 'support': 32613.0}
42
- - Weighted avg: {'precision': 0.9127462162898813, 'recall': 0.9141753288565909, 'f1-score': 0.9133792098172753, 'support': 32613.0}
43
 
44
  ## Model description
45
 
@@ -70,22 +70,22 @@ The following hyperparameters were used during training:
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.3274 | {'precision': 0.5337112171837709, 'recall': 0.4108865411116215, 'f1-score': 0.4643135219309629, 'support': 4354.0} | {'precision': 0.6779310344827586, 'recall': 0.8369518944231588, 'f1-score': 0.7490950657268052, 'support': 2349.0} | {'precision': 0.9961064759634486, 'recall': 1.0, 'f1-score': 0.9980494407069782, 'support': 12536.0} | {'precision': 0.868321718931475, 'recall': 0.8944220128607746, 'f1-score': 0.8811786372007365, 'support': 13374.0} | 0.8663 | {'precision': 0.7690176116403633, 'recall': 0.7855651120988888, 'f1-score': 0.7731591663913707, 'support': 32613.0} | {'precision': 0.8590551035257559, 'recall': 0.8663109802839358, 'f1-score': 0.8609350954068932, 'support': 32613.0} |
74
- | No log | 2.0 | 82 | 0.2487 | {'precision': 0.6105208603265094, 'recall': 0.5411116214974736, 'f1-score': 0.5737245829782053, 'support': 4354.0} | {'precision': 0.8533737024221453, 'recall': 0.8399318859088974, 'f1-score': 0.8465994421797898, 'support': 2349.0} | {'precision': 0.9999201915403033, 'recall': 0.9994416081684748, 'f1-score': 0.9996808425756004, 'support': 12536.0} | {'precision': 0.8785221391604371, 'recall': 0.9138627187079408, 'f1-score': 0.8958440225756799, 'support': 13374.0} | 0.8917 | {'precision': 0.8355842233623487, 'recall': 0.8235869585706966, 'f1-score': 0.8289622225773189, 'support': 32613.0} | {'precision': 0.8875950468565349, 'recall': 0.8916689663631068, 'f1-score': 0.8892060198210008, 'support': 32613.0} |
75
- | No log | 3.0 | 123 | 0.2409 | {'precision': 0.648193359375, 'recall': 0.6097841065686724, 'f1-score': 0.6284023668639053, 'support': 4354.0} | {'precision': 0.8872870249017037, 'recall': 0.8646232439335888, 'f1-score': 0.8758085381630012, 'support': 2349.0} | {'precision': 0.9997607464710104, 'recall': 1.0, 'f1-score': 0.9998803589232302, 'support': 12536.0} | {'precision': 0.8920300971583023, 'recall': 0.9130402273067145, 'f1-score': 0.9024128884454791, 'support': 13374.0} | 0.9025 | {'precision': 0.8568178069765041, 'recall': 0.8468618944522439, 'f1-score': 0.8516260380989039, 'support': 32613.0} | {'precision': 0.900545253284536, 'recall': 0.9024928709410358, 'f1-score': 0.9013800727011249, 'support': 32613.0} |
76
- | No log | 4.0 | 164 | 0.2301 | {'precision': 0.6427889207258835, 'recall': 0.6182820395039045, 'f1-score': 0.6302973542495903, 'support': 4354.0} | {'precision': 0.8526522593320236, 'recall': 0.9237973605789698, 'f1-score': 0.8868001634654679, 'support': 2349.0} | {'precision': 0.9997606510292005, 'recall': 0.9996011486917677, 'f1-score': 0.999680893498205, 'support': 12536.0} | {'precision': 0.9004945301963135, 'recall': 0.8986092418124719, 'f1-score': 0.8995508982035928, 'support': 13374.0} | 0.9018 | {'precision': 0.8489240903208553, 'recall': 0.8600724476467785, 'f1-score': 0.854082327354214, 'support': 32613.0} | {'precision': 0.9008001866175751, 'recall': 0.9018182933186153, 'f1-score': 0.9011744291494633, 'support': 32613.0} |
77
- | No log | 5.0 | 205 | 0.2631 | {'precision': 0.6787741203178207, 'recall': 0.5493798805695912, 'f1-score': 0.6072607260726073, 'support': 4354.0} | {'precision': 0.9056947608200455, 'recall': 0.8463175819497658, 'f1-score': 0.875, 'support': 2349.0} | {'precision': 0.9997607273887382, 'recall': 0.9999202297383536, 'f1-score': 0.9998404722022812, 'support': 12536.0} | {'precision': 0.8748955140707718, 'recall': 0.9391356363092568, 'f1-score': 0.9058781103498017, 'support': 13374.0} | 0.9038 | {'precision': 0.864781280649344, 'recall': 0.8336883321417418, 'f1-score': 0.8469948271561726, 'support': 32613.0} | {'precision': 0.8989271945775551, 'recall': 0.903780700947475, 'f1-score': 0.899905013603967, 'support': 32613.0} |
78
- | No log | 6.0 | 246 | 0.2843 | {'precision': 0.7390988372093024, 'recall': 0.467156637574644, 'f1-score': 0.57247396566282, 'support': 4354.0} | {'precision': 0.886744966442953, 'recall': 0.8999574286930608, 'f1-score': 0.8933023452355799, 'support': 2349.0} | {'precision': 0.9996809952946806, 'recall': 0.9999202297383536, 'f1-score': 0.9998005982053838, 'support': 12536.0} | {'precision': 0.8590842147543178, 'recall': 0.9595483774487812, 'f1-score': 0.9065413958745407, 'support': 13374.0} | 0.9050 | {'precision': 0.8711522534253133, 'recall': 0.8316456683637099, 'f1-score': 0.8430295762445812, 'support': 32613.0} | {'precision': 0.8991013862116997, 'recall': 0.9050378683347131, 'f1-score': 0.896835733694634, 'support': 32613.0} |
79
- | No log | 7.0 | 287 | 0.2983 | {'precision': 0.6895514223194749, 'recall': 0.5790078089113458, 'f1-score': 0.6294631710362047, 'support': 4354.0} | {'precision': 0.8248984115256742, 'recall': 0.9506172839506173, 'f1-score': 0.8833069620253163, 'support': 2349.0} | {'precision': 0.9992028061224489, 'recall': 0.9998404594767071, 'f1-score': 0.9995215311004785, 'support': 12536.0} | {'precision': 0.8964686998394864, 'recall': 0.9187228951697323, 'f1-score': 0.9074593796159526, 'support': 13374.0} | 0.9068 | {'precision': 0.8525303349517711, 'recall': 0.8620471118771007, 'f1-score': 0.854937760944488, 'support': 32613.0} | {'precision': 0.9031788559978264, 'recall': 0.9068469628675682, 'f1-score': 0.9039933265062536, 'support': 32613.0} |
80
- | No log | 8.0 | 328 | 0.3043 | {'precision': 0.6570592208961945, 'recall': 0.6701883325677538, 'f1-score': 0.6635588402501421, 'support': 4354.0} | {'precision': 0.8852592895059208, 'recall': 0.9229459344401874, 'f1-score': 0.9037098791162985, 'support': 2349.0} | {'precision': 0.9996012441183507, 'recall': 0.9998404594767071, 'f1-score': 0.9997208374875374, 'support': 12536.0} | {'precision': 0.9098907766990292, 'recall': 0.8969642590100194, 'f1-score': 0.9033812787107464, 'support': 13374.0} | 0.9081 | {'precision': 0.8629526328048738, 'recall': 0.8724847463736669, 'f1-score': 0.8675927088911811, 'support': 32613.0} | {'precision': 0.9088458701337473, 'recall': 0.9081041302548064, 'f1-score': 0.9084190763411705, 'support': 32613.0} |
81
- | No log | 9.0 | 369 | 0.3104 | {'precision': 0.6748837209302325, 'recall': 0.6665135507579237, 'f1-score': 0.6706725213773977, 'support': 4354.0} | {'precision': 0.9106310885218127, 'recall': 0.9152830991911451, 'f1-score': 0.9129511677282377, 'support': 2349.0} | {'precision': 0.9996012123145638, 'recall': 0.9997606892150607, 'f1-score': 0.9996809444045626, 'support': 12536.0} | {'precision': 0.9039063664827792, 'recall': 0.9066098399880365, 'f1-score': 0.9052560848140958, 'support': 13374.0} | 0.9110 | {'precision': 0.8722555970623471, 'recall': 0.8720417947880416, 'f1-score': 0.8721401795810735, 'support': 32613.0} | {'precision': 0.9105988621342419, 'recall': 0.910986416459694, 'f1-score': 0.9107878958829343, 'support': 32613.0} |
82
- | No log | 10.0 | 410 | 0.3317 | {'precision': 0.657001414427157, 'recall': 0.6401010564997703, 'f1-score': 0.6484411354118194, 'support': 4354.0} | {'precision': 0.8625536899648575, 'recall': 0.9404001702852277, 'f1-score': 0.8997963340122199, 'support': 2349.0} | {'precision': 0.999680969851651, 'recall': 0.9998404594767071, 'f1-score': 0.9997607083034219, 'support': 12536.0} | {'precision': 0.905666063893912, 'recall': 0.898758785703604, 'f1-score': 0.9021992043833972, 'support': 13374.0} | 0.9061 | {'precision': 0.8562255345343944, 'recall': 0.8697751179913272, 'f1-score': 0.8625493455277146, 'support': 32613.0} | {'precision': 0.905500915362609, 'recall': 0.9060803973875449, 'f1-score': 0.9056494861218845, 'support': 32613.0} |
83
- | No log | 11.0 | 451 | 0.3783 | {'precision': 0.6712632356562424, 'recall': 0.6260909508497933, 'f1-score': 0.6478906714200832, 'support': 4354.0} | {'precision': 0.8602825745682888, 'recall': 0.9331630481055768, 'f1-score': 0.8952419848887073, 'support': 2349.0} | {'precision': 0.999680969851651, 'recall': 0.9998404594767071, 'f1-score': 0.9997607083034219, 'support': 12536.0} | {'precision': 0.9027922174365067, 'recall': 0.9090025422461493, 'f1-score': 0.9058867362146051, 'support': 13374.0} | 0.9079 | {'precision': 0.8585047493781722, 'recall': 0.8670242501695566, 'f1-score': 0.8621950252067043, 'support': 32613.0} | {'precision': 0.9060628476302188, 'recall': 0.9078894919203998, 'f1-score': 0.9067601525554976, 'support': 32613.0} |
84
- | No log | 12.0 | 492 | 0.4069 | {'precision': 0.6924342105263158, 'recall': 0.5801561782269178, 'f1-score': 0.6313421644588852, 'support': 4354.0} | {'precision': 0.8779304769603881, 'recall': 0.9246487867177522, 'f1-score': 0.9006842214389384, 'support': 2349.0} | {'precision': 0.9996809952946806, 'recall': 0.9999202297383536, 'f1-score': 0.9998005982053838, 'support': 12536.0} | {'precision': 0.8889048165137615, 'recall': 0.927321668909825, 'f1-score': 0.9077069457659372, 'support': 13374.0} | 0.9087 | {'precision': 0.8647376248237866, 'recall': 0.8580117158982121, 'f1-score': 0.8598834824672862, 'support': 32613.0} | {'precision': 0.9044654345224509, 'recall': 0.908686720019624, 'f1-score': 0.905704596694275, 'support': 32613.0} |
85
- | 0.1707 | 13.0 | 533 | 0.3896 | {'precision': 0.6659044134461468, 'recall': 0.6688102893890675, 'f1-score': 0.667354188151713, 'support': 4354.0} | {'precision': 0.8783068783068783, 'recall': 0.918688803746275, 'f1-score': 0.8980441115272575, 'support': 2349.0} | {'precision': 0.9998404849258254, 'recall': 1.0, 'f1-score': 0.9999202361011406, 'support': 12536.0} | {'precision': 0.9120422801057002, 'recall': 0.9032451024375654, 'f1-score': 0.9076223749953041, 'support': 13374.0} | 0.9103 | {'precision': 0.8640235141961377, 'recall': 0.8726860488932269, 'f1-score': 0.8682352276938539, 'support': 32613.0} | {'precision': 0.9105002436590061, 'recall': 0.9102505135988717, 'f1-score': 0.9103335319087843, 'support': 32613.0} |
86
- | 0.1707 | 14.0 | 574 | 0.4518 | {'precision': 0.6987791932059448, 'recall': 0.6047312815801562, 'f1-score': 0.6483624722974637, 'support': 4354.0} | {'precision': 0.8978132884777124, 'recall': 0.9088974031502767, 'f1-score': 0.9033213454622383, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.8916008614501076, 'recall': 0.9286675639300135, 'f1-score': 0.9097568121886903, 'support': 13374.0} | 0.9114 | {'precision': 0.8720084538340115, 'recall': 0.8605541195997, 'f1-score': 0.8653302448320508, 'support': 32613.0} | {'precision': 0.9079115108212787, 'recall': 0.9113850305093061, 'f1-score': 0.9090381047714349, 'support': 32613.0} |
87
- | 0.1707 | 15.0 | 615 | 0.4267 | {'precision': 0.6925925925925925, 'recall': 0.6442351860358291, 'f1-score': 0.6675392670157068, 'support': 4354.0} | {'precision': 0.904277848369335, 'recall': 0.9088974031502767, 'f1-score': 0.9065817409766455, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.9008415660446396, 'recall': 0.9204426499177508, 'f1-score': 0.9105366322719035, 'support': 13374.0} | 0.9133 | {'precision': 0.8743881198022121, 'recall': 0.8683738672105525, 'f1-score': 0.8711344974110167, 'support': 32613.0} | {'precision': 0.911340633421535, 'recall': 0.9132861128997639, 'f1-score': 0.9121529285245232, 'support': 32613.0} |
88
- | 0.1707 | 16.0 | 656 | 0.4313 | {'precision': 0.6927914852443154, 'recall': 0.6577859439595773, 'f1-score': 0.6748350612629594, 'support': 4354.0} | {'precision': 0.9005037783375315, 'recall': 0.913154533844189, 'f1-score': 0.9067850348763474, 'support': 2349.0} | {'precision': 0.9998404722022812, 'recall': 0.9999202297383536, 'f1-score': 0.999880349379811, 'support': 12536.0} | {'precision': 0.9048672566371682, 'recall': 0.9174517720951099, 'f1-score': 0.9111160614836266, 'support': 13374.0} | 0.9142 | {'precision': 0.8745007481053241, 'recall': 0.8720781199093074, 'f1-score': 0.873154126750686, 'support': 32613.0} | {'precision': 0.9127462162898813, 'recall': 0.9141753288565909, 'f1-score': 0.9133792098172753, 'support': 32613.0} |
89
 
90
 
91
  ### Framework versions
 
17
  name: essays_su_g
18
  type: essays_su_g
19
  config: sep_tok
20
+ split: train[40%:60%]
21
  args: sep_tok
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9137861922234899
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4085
36
+ - Claim: {'precision': 0.6911519198664441, 'recall': 0.7267939433838051, 'f1-score': 0.708524975933255, 'support': 4557.0}
37
+ - Majorclaim: {'precision': 0.8940252943741823, 'recall': 0.9034817100044072, 'f1-score': 0.8987286277948269, 'support': 2269.0}
38
+ - O: {'precision': 0.9999095350099512, 'recall': 0.9983741306115076, 'f1-score': 0.9991412429378531, 'support': 11071.0}
39
+ - Premise: {'precision': 0.9249930030786454, 'recall': 0.9095913031512316, 'f1-score': 0.9172275029487268, 'support': 14534.0}
40
+ - Accuracy: 0.9138
41
+ - Macro avg: {'precision': 0.8775199380823058, 'recall': 0.8845602717877379, 'f1-score': 0.8809055874036654, 'support': 32431.0}
42
+ - Weighted avg: {'precision': 0.9155428281769482, 'recall': 0.9137861922234899, 'f1-score': 0.914570651543772, 'support': 32431.0}
43
 
44
  ## Model description
45
 
 
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3528 | {'precision': 0.5627967198964178, 'recall': 0.5723063418915953, 'f1-score': 0.5675116962245675, 'support': 4557.0} | {'precision': 0.7071971390254805, 'recall': 0.6972234464521816, 'f1-score': 0.7021748779405237, 'support': 2269.0} | {'precision': 0.9985252096967463, 'recall': 0.9785023936410442, 'f1-score': 0.9884124087591241, 'support': 11071.0} | {'precision': 0.8892665352457345, 'recall': 0.900096325856612, 'f1-score': 0.8946486578902376, 'support': 14534.0} | 0.8666 | {'precision': 0.7894464009660948, 'recall': 0.7870321269603583, 'f1-score': 0.7881869102036132, 'support': 32431.0} | {'precision': 0.8679524954775053, 'recall': 0.8666091085689618, 'f1-score': 0.8672234272421873, 'support': 32431.0} |
74
+ | No log | 2.0 | 82 | 0.2667 | {'precision': 0.7048665620094191, 'recall': 0.4926486723721747, 'f1-score': 0.5799535003874967, 'support': 4557.0} | {'precision': 0.8561310314298363, 'recall': 0.8523578669017188, 'f1-score': 0.8542402826855124, 'support': 2269.0} | {'precision': 0.9996358670914884, 'recall': 0.9918706530575377, 'f1-score': 0.9957381211461733, 'support': 11071.0} | {'precision': 0.8665166854143233, 'recall': 0.954038805559378, 'f1-score': 0.9081739586062353, 'support': 14534.0} | 0.8950 | {'precision': 0.8567875364862668, 'recall': 0.8227289994727023, 'f1-score': 0.8345264657063545, 'support': 32431.0} | {'precision': 0.8885190226564973, 'recall': 0.8950078628472757, 'f1-score': 0.8881729319562012, 'support': 32431.0} |
75
+ | No log | 3.0 | 123 | 0.2512 | {'precision': 0.6279952076677316, 'recall': 0.6901470265525566, 'f1-score': 0.6576058546785155, 'support': 4557.0} | {'precision': 0.7716945996275605, 'recall': 0.9131776112825033, 'f1-score': 0.836495761001211, 'support': 2269.0} | {'precision': 0.9997280638143582, 'recall': 0.9962063047601842, 'f1-score': 0.997964077274578, 'support': 11071.0} | {'precision': 0.9338246023639282, 'recall': 0.8806247419843126, 'f1-score': 0.9064447592067989, 'support': 14534.0} | 0.8956 | {'precision': 0.8333106183683946, 'recall': 0.8700389211448892, 'f1-score': 0.8496276130402758, 'support': 32431.0} | {'precision': 0.9020056542549684, 'recall': 0.8955937220560575, 'f1-score': 0.8978276091178259, 'support': 32431.0} |
76
+ | No log | 4.0 | 164 | 0.2493 | {'precision': 0.5918265221017515, 'recall': 0.7785824007022164, 'f1-score': 0.6724791508718727, 'support': 4557.0} | {'precision': 0.9070698088039129, 'recall': 0.8990744821507272, 'f1-score': 0.9030544488711819, 'support': 2269.0} | {'precision': 1.0, 'recall': 0.9983741306115076, 'f1-score': 0.9991864039052614, 'support': 11071.0} | {'precision': 0.9359677173747526, 'recall': 0.8458098252373745, 'f1-score': 0.8886077779384126, 'support': 14534.0} | 0.8922 | {'precision': 0.8587160120701043, 'recall': 0.8804602096754564, 'f1-score': 0.8658319453966822, 'support': 32431.0} | {'precision': 0.907448110194518, 'recall': 0.8921710708889643, 'f1-score': 0.8969978155839744, 'support': 32431.0} |
77
+ | No log | 5.0 | 205 | 0.2277 | {'precision': 0.7054698457223001, 'recall': 0.6622778143515471, 'f1-score': 0.6831918505942275, 'support': 4557.0} | {'precision': 0.9207650273224044, 'recall': 0.8911414720141031, 'f1-score': 0.9057110862262038, 'support': 2269.0} | {'precision': 1.0, 'recall': 0.9978321741486768, 'f1-score': 0.9989149109322725, 'support': 11071.0} | {'precision': 0.9053655264922871, 'recall': 0.9287876702903537, 'f1-score': 0.9169270479554409, 'support': 14534.0} | 0.9123 | {'precision': 0.8829000998842478, 'recall': 0.8700097827011701, 'f1-score': 0.8761862239270362, 'support': 32431.0} | {'precision': 0.9106603094566913, 'recall': 0.912275292158737, 'f1-score': 0.9112876078974042, 'support': 32431.0} |
78
+ | No log | 6.0 | 246 | 0.2558 | {'precision': 0.6772561715904493, 'recall': 0.7344744349352644, 'f1-score': 0.7047057585008949, 'support': 4557.0} | {'precision': 0.9172320217096337, 'recall': 0.8937858087263112, 'f1-score': 0.9053571428571427, 'support': 2269.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | {'precision': 0.9226713532513181, 'recall': 0.9030549057382689, 'f1-score': 0.9127577454014394, 'support': 14534.0} | 0.9112 | {'precision': 0.8792672683441743, 'recall': 0.8823997384835534, 'f1-score': 0.880479162774664, 'support': 32431.0} | {'precision': 0.9141734652287734, 'recall': 0.9112269125219697, 'f1-score': 0.9124791845559805, 'support': 32431.0} |
79
+ | No log | 7.0 | 287 | 0.2902 | {'precision': 0.7137206427688504, 'recall': 0.6335308316875137, 'f1-score': 0.671239246686817, 'support': 4557.0} | {'precision': 0.9082039911308204, 'recall': 0.9026002644336713, 'f1-score': 0.9053934571175951, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.8983152029716105, 'recall': 0.9318150543553048, 'f1-score': 0.9147585275244849, 'support': 14534.0} | 0.9106 | {'precision': 0.8800373450161016, 'recall': 0.8666026517912839, 'f1-score': 0.872644427194061, 'support': 32431.0} | {'precision': 0.9077503480513693, 'recall': 0.910610218617989, 'f1-score': 0.9087067599584377, 'support': 32431.0} |
80
+ | No log | 8.0 | 328 | 0.3177 | {'precision': 0.7160274320548641, 'recall': 0.618608733816107, 'f1-score': 0.6637626559924652, 'support': 4557.0} | {'precision': 0.8826768318509106, 'recall': 0.9184662847069194, 'f1-score': 0.9002159827213824, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.8981960472211169, 'recall': 0.9318150543553048, 'f1-score': 0.914696744563015, 'support': 14534.0} | 0.9096 | {'precision': 0.8742024635800042, 'recall': 0.8668386323917443, 'f1-score': 0.8694654651810524, 'support': 32431.0} | {'precision': 0.906235103522757, 'recall': 0.9096235083716198, 'f1-score': 0.9072662719450809, 'support': 32431.0} |
81
+ | No log | 9.0 | 369 | 0.3188 | {'precision': 0.6808467741935483, 'recall': 0.7410577134079438, 'f1-score': 0.7096774193548386, 'support': 4557.0} | {'precision': 0.9019170753455193, 'recall': 0.8915821947994711, 'f1-score': 0.8967198581560283, 'support': 2269.0} | {'precision': 0.999909600433918, 'recall': 0.9990967392286153, 'f1-score': 0.9995030045633218, 'support': 11071.0} | {'precision': 0.927996611605252, 'recall': 0.9044997935874501, 'f1-score': 0.9160975609756098, 'support': 14534.0} | 0.9129 | {'precision': 0.8776675153945594, 'recall': 0.8840591102558701, 'f1-score': 0.8804994607624497, 'support': 32431.0} | {'precision': 0.9159930478071482, 'recall': 0.9129228207579168, 'f1-score': 0.9142091539852634, 'support': 32431.0} |
82
+ | No log | 10.0 | 410 | 0.3553 | {'precision': 0.6544131725062224, 'recall': 0.750054860653939, 'f1-score': 0.6989775051124745, 'support': 4557.0} | {'precision': 0.8812341504649197, 'recall': 0.9189070074922874, 'f1-score': 0.8996763754045308, 'support': 2269.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | {'precision': 0.933473592571097, 'recall': 0.885303426448328, 'f1-score': 0.9087506179814958, 'support': 14534.0} | 0.9074 | {'precision': 0.8672576208190016, 'recall': 0.888250182378654, 'f1-score': 0.8766816637361983, 'support': 32431.0} | {'precision': 0.9132862117518615, 'recall': 0.90737257562209, 'f1-score': 0.9095582394113776, 'support': 32431.0} |
83
+ | No log | 11.0 | 451 | 0.3296 | {'precision': 0.6971476510067114, 'recall': 0.7294272547728768, 'f1-score': 0.7129222520107238, 'support': 4557.0} | {'precision': 0.8972542072630647, 'recall': 0.8929043631555752, 'f1-score': 0.8950740004417939, 'support': 2269.0} | {'precision': 0.999909412084428, 'recall': 0.9970192394544305, 'f1-score': 0.9984622342831299, 'support': 11071.0} | {'precision': 0.9236391479883057, 'recall': 0.9129627081326545, 'f1-score': 0.9182698961937715, 'support': 14534.0} | 0.9145 | {'precision': 0.8794876045856275, 'recall': 0.8830783913788842, 'f1-score': 0.8811820957323547, 'support': 32431.0} | {'precision': 0.9160044438952304, 'recall': 0.9144645555178688, 'f1-score': 0.9151681932855632, 'support': 32431.0} |
84
+ | No log | 12.0 | 492 | 0.3576 | {'precision': 0.7129815185927411, 'recall': 0.7026552556506473, 'f1-score': 0.7077807250221043, 'support': 4557.0} | {'precision': 0.9037336932073774, 'recall': 0.8854120758043191, 'f1-score': 0.8944790739091719, 'support': 2269.0} | {'precision': 0.9995480021695896, 'recall': 0.9987354349200614, 'f1-score': 0.9991415533366468, 'support': 11071.0} | {'precision': 0.9171613783691572, 'recall': 0.9247970276592817, 'f1-score': 0.9209633766144781, 'support': 14534.0} | 0.9161 | {'precision': 0.8833561480847163, 'recall': 0.8778999485085774, 'f1-score': 0.8805911822206004, 'support': 32431.0} | {'precision': 0.9156562528245048, 'recall': 0.9160679596682186, 'f1-score': 0.9158431018263538, 'support': 32431.0} |
85
+ | 0.1716 | 13.0 | 533 | 0.3893 | {'precision': 0.7014310494362532, 'recall': 0.7098968619705947, 'f1-score': 0.7056385647289781, 'support': 4557.0} | {'precision': 0.9027531083481349, 'recall': 0.8959894226531512, 'f1-score': 0.8993585489935855, 'support': 2269.0} | {'precision': 0.9999095677337674, 'recall': 0.9987354349200614, 'f1-score': 0.9993221564462921, 'support': 11071.0} | {'precision': 0.9189468605693019, 'recall': 0.9173661758634925, 'f1-score': 0.9181558378955342, 'support': 14534.0} | 0.9145 | {'precision': 0.8807601465218644, 'recall': 0.880496973851825, 'f1-score': 0.8806187770160975, 'support': 32431.0} | {'precision': 0.914888242453754, 'recall': 0.9144953902130677, 'f1-score': 0.9146869362377662, 'support': 32431.0} |
86
+ | 0.1716 | 14.0 | 574 | 0.4032 | {'precision': 0.6816792337477073, 'recall': 0.7340355497037525, 'f1-score': 0.7068892645815723, 'support': 4557.0} | {'precision': 0.8945295404814004, 'recall': 0.9008373732921993, 'f1-score': 0.8976723759332456, 'support': 2269.0} | {'precision': 0.9999095431931253, 'recall': 0.998464456688646, 'f1-score': 0.999186477447347, 'support': 11071.0} | {'precision': 0.9270304568527918, 'recall': 0.9047062061373331, 'f1-score': 0.9157322933351906, 'support': 14534.0} | 0.9125 | {'precision': 0.8757871935687562, 'recall': 0.8845108964554826, 'f1-score': 0.8798701028243389, 'support': 32431.0} | {'precision': 0.915160155657555, 'recall': 0.9124603003299312, 'f1-score': 0.9136122735297709, 'support': 32431.0} |
87
+ | 0.1716 | 15.0 | 615 | 0.4182 | {'precision': 0.6571861964353432, 'recall': 0.760588106210226, 'f1-score': 0.7051164683145152, 'support': 4557.0} | {'precision': 0.8850574712643678, 'recall': 0.9162626707800793, 'f1-score': 0.9003897791251624, 'support': 2269.0} | {'precision': 0.9999095268252963, 'recall': 0.998283804534369, 'f1-score': 0.9990960043391791, 'support': 11071.0} | {'precision': 0.9354416575790622, 'recall': 0.885303426448328, 'f1-score': 0.9096822086323306, 'support': 14534.0} | 0.9085 | {'precision': 0.8693987130260175, 'recall': 0.8901095019932507, 'f1-score': 0.8785711151027968, 'support': 32431.0} | {'precision': 0.9148253313863789, 'recall': 0.9085134593444544, 'f1-score': 0.910811052364885, 'support': 32431.0} |
88
+ | 0.1716 | 16.0 | 656 | 0.4085 | {'precision': 0.6911519198664441, 'recall': 0.7267939433838051, 'f1-score': 0.708524975933255, 'support': 4557.0} | {'precision': 0.8940252943741823, 'recall': 0.9034817100044072, 'f1-score': 0.8987286277948269, 'support': 2269.0} | {'precision': 0.9999095350099512, 'recall': 0.9983741306115076, 'f1-score': 0.9991412429378531, 'support': 11071.0} | {'precision': 0.9249930030786454, 'recall': 0.9095913031512316, 'f1-score': 0.9172275029487268, 'support': 14534.0} | 0.9138 | {'precision': 0.8775199380823058, 'recall': 0.8845602717877379, 'f1-score': 0.8809055874036654, 'support': 32431.0} | {'precision': 0.9155428281769482, 'recall': 0.9137861922234899, 'f1-score': 0.914570651543772, 'support': 32431.0} |
89
 
90
 
91
  ### Framework versions
meta_data/meta_s42_e16_cvi2.json CHANGED
@@ -1 +1 @@
1
- {"Claim": {"precision": 0.6571861964353432, "recall": 0.760588106210226, "f1-score": 0.7051164683145152, "support": 4557.0}, "MajorClaim": {"precision": 0.8850574712643678, "recall": 0.9162626707800793, "f1-score": 0.9003897791251624, "support": 2269.0}, "O": {"precision": 0.9999095268252963, "recall": 0.998283804534369, "f1-score": 0.9990960043391791, "support": 11071.0}, "Premise": {"precision": 0.9354416575790622, "recall": 0.885303426448328, "f1-score": 0.9096822086323306, "support": 14534.0}, "accuracy": 0.9085134593444544, "macro avg": {"precision": 0.8693987130260175, "recall": 0.8901095019932507, "f1-score": 0.8785711151027968, "support": 32431.0}, "weighted avg": {"precision": 0.9148253313863789, "recall": 0.9085134593444544, "f1-score": 0.910811052364885, "support": 32431.0}}
 
1
+ {"Claim": {"precision": 0.6911519198664441, "recall": 0.7267939433838051, "f1-score": 0.708524975933255, "support": 4557.0}, "MajorClaim": {"precision": 0.8940252943741823, "recall": 0.9034817100044072, "f1-score": 0.8987286277948269, "support": 2269.0}, "O": {"precision": 0.9999095350099512, "recall": 0.9983741306115076, "f1-score": 0.9991412429378531, "support": 11071.0}, "Premise": {"precision": 0.9249930030786454, "recall": 0.9095913031512316, "f1-score": 0.9172275029487268, "support": 14534.0}, "accuracy": 0.9137861922234899, "macro avg": {"precision": 0.8775199380823058, "recall": 0.8845602717877379, "f1-score": 0.8809055874036654, "support": 32431.0}, "weighted avg": {"precision": 0.9155428281769482, "recall": 0.9137861922234899, "f1-score": 0.914570651543772, "support": 32431.0}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6196e4ea61870f43126a6769d53a20551c226fff9c3b82c6c1b2f1e42d270778
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb49f85c04107db84454495dbce8d0d35706e8aab87c4f8ca04364e68cbe9c43
3
  size 592324828