Theoreticallyhugo commited on
Commit
04d41a3
1 Parent(s): f947466

trainer: training complete at 2024-02-06 18:48:18.140397.

Browse files
Files changed (2) hide show
  1. README.md +86 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - fancy_dataset
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-sep_tok
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: fancy_dataset
18
+ type: fancy_dataset
19
+ config: sep_tok
20
+ split: test
21
+ args: sep_tok
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8681852998967596
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-sep_tok
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3013
36
+ - B-claim: {'precision': 0.3954802259887006, 'recall': 0.2527075812274368, 'f1-score': 0.30837004405286345, 'support': 277.0}
37
+ - B-majorclaim: {'precision': 0.6666666666666666, 'recall': 0.0425531914893617, 'f1-score': 0.08, 'support': 141.0}
38
+ - B-premise: {'precision': 0.7548076923076923, 'recall': 0.9797191887675507, 'f1-score': 0.8526816021724372, 'support': 641.0}
39
+ - I-claim: {'precision': 0.5792199878123095, 'recall': 0.4660455994116205, 'f1-score': 0.5165059095231627, 'support': 4079.0}
40
+ - I-majorclaim: {'precision': 0.7457245724572458, 'recall': 0.8118569328760411, 'f1-score': 0.7773868167956838, 'support': 2041.0}
41
+ - I-premise: {'precision': 0.8603904126513466, 'recall': 0.9119161938018333, 'f1-score': 0.8854043058145448, 'support': 11455.0}
42
+ - O: {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0}
43
+ - Accuracy: 0.8682
44
+ - Macro avg: {'precision': 0.7145750809045274, 'recall': 0.6374271350519594, 'f1-score': 0.6312586700067718, 'support': 30027.0}
45
+ - Weighted avg: {'precision': 0.8598197108337798, 'recall': 0.8681852998967596, 'f1-score': 0.8610425793284459, 'support': 30027.0}
46
+
47
+ ## Model description
48
+
49
+ More information needed
50
+
51
+ ## Intended uses & limitations
52
+
53
+ More information needed
54
+
55
+ ## Training and evaluation data
56
+
57
+ More information needed
58
+
59
+ ## Training procedure
60
+
61
+ ### Training hyperparameters
62
+
63
+ The following hyperparameters were used during training:
64
+ - learning_rate: 2e-05
65
+ - train_batch_size: 8
66
+ - eval_batch_size: 8
67
+ - seed: 42
68
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
+ - lr_scheduler_type: linear
70
+ - num_epochs: 3
71
+
72
+ ### Training results
73
+
74
+ | Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
75
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
76
+ | No log | 1.0 | 41 | 0.4523 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6806833114323259, 'recall': 0.8081123244929798, 'f1-score': 0.738944365192582, 'support': 641.0} | {'precision': 0.4538361508452536, 'recall': 0.17112037264035304, 'f1-score': 0.248531244436532, 'support': 4079.0} | {'precision': 0.6357986326911125, 'recall': 0.5012248897599216, 'f1-score': 0.5605479452054795, 'support': 2041.0} | {'precision': 0.7754845907125923, 'recall': 0.9709297250109122, 'f1-score': 0.8622708066829476, 'support': 11455.0} | {'precision': 0.961874840791373, 'recall': 0.9942947423856754, 'f1-score': 0.9778161415623651, 'support': 11393.0} | 0.8222 | {'precision': 0.5010967894960939, 'recall': 0.4922402934699774, 'f1-score': 0.4840157861542723, 'support': 30027.0} | {'precision': 0.7801977126918217, 'recall': 0.8222266626702635, 'f1-score': 0.7875935668459264, 'support': 30027.0} |
77
+ | No log | 2.0 | 82 | 0.3203 | {'precision': 0.24675324675324675, 'recall': 0.06859205776173286, 'f1-score': 0.10734463276836159, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.6780383795309168, 'recall': 0.9921996879875195, 'f1-score': 0.8055731475617479, 'support': 641.0} | {'precision': 0.5418703160638645, 'recall': 0.407697965187546, 'f1-score': 0.46530498041410184, 'support': 4079.0} | {'precision': 0.7875560538116592, 'recall': 0.6883880450759432, 'f1-score': 0.7346405228758172, 'support': 2041.0} | {'precision': 0.8346739554861382, 'recall': 0.9330423395896988, 'f1-score': 0.8811211871393239, 'support': 11455.0} | {'precision': 0.9997357759379955, 'recall': 0.9963135258492056, 'f1-score': 0.9980217171495142, 'support': 11393.0} | 0.8580 | {'precision': 0.5840896753691174, 'recall': 0.583747660207378, 'f1-score': 0.5702865982726951, 'support': 30027.0} | {'precision': 0.8416373274399493, 'recall': 0.8579611682818796, 'f1-score': 0.8461448628010773, 'support': 30027.0} |
78
+ | No log | 3.0 | 123 | 0.3013 | {'precision': 0.3954802259887006, 'recall': 0.2527075812274368, 'f1-score': 0.30837004405286345, 'support': 277.0} | {'precision': 0.6666666666666666, 'recall': 0.0425531914893617, 'f1-score': 0.08, 'support': 141.0} | {'precision': 0.7548076923076923, 'recall': 0.9797191887675507, 'f1-score': 0.8526816021724372, 'support': 641.0} | {'precision': 0.5792199878123095, 'recall': 0.4660455994116205, 'f1-score': 0.5165059095231627, 'support': 4079.0} | {'precision': 0.7457245724572458, 'recall': 0.8118569328760411, 'f1-score': 0.7773868167956838, 'support': 2041.0} | {'precision': 0.8603904126513466, 'recall': 0.9119161938018333, 'f1-score': 0.8854043058145448, 'support': 11455.0} | {'precision': 0.9997360084477297, 'recall': 0.9971912577898709, 'f1-score': 0.9984620116887112, 'support': 11393.0} | 0.8682 | {'precision': 0.7145750809045274, 'recall': 0.6374271350519594, 'f1-score': 0.6312586700067718, 'support': 30027.0} | {'precision': 0.8598197108337798, 'recall': 0.8681852998967596, 'f1-score': 0.8610425793284459, 'support': 30027.0} |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.37.1
84
+ - Pytorch 2.1.2+cu121
85
+ - Datasets 2.16.1
86
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32300cbf932e31f222044f90470759b1876373b427ccdd1a9aa67ec8cd263fcc
3
  size 592330980
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9dd5742133824d16209428885eaa7c8c92d2e898abb88eb4e12ca5c84aec81
3
  size 592330980