Theoreticallyhugo
commited on
Commit
•
7979f0a
1
Parent(s):
ab19f23
trainer: training complete at 2024-02-19 20:12:32.909204.
Browse files- README.md +15 -14
- meta_data/README_s42_e5.md +85 -0
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Claim: {'precision': 0.
|
37 |
-
- Majorclaim: {'precision': 0.
|
38 |
-
- O: {'precision': 0
|
39 |
-
- Premise: {'precision': 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- Macro avg: {'precision': 0.
|
42 |
-
- Weighted avg: {'precision': 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -64,16 +64,17 @@ The following hyperparameters were used during training:
|
|
64 |
- seed: 42
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
-
- num_epochs:
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
-
| No log | 1.0 | 41 | 0.
|
74 |
-
| No log | 2.0 | 82 | 0.
|
75 |
-
| No log | 3.0 | 123 | 0.
|
76 |
-
| No log | 4.0 | 164 | 0.
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8921304159589702
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2544
|
36 |
+
- Claim: {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0}
|
38 |
+
- O: {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0}
|
39 |
+
- Premise: {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8921
|
41 |
+
- Macro avg: {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0}
|
42 |
+
- Weighted avg: {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0}
|
43 |
|
44 |
## Model description
|
45 |
|
|
|
64 |
- seed: 42
|
65 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 5
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.3491 | {'precision': 0.5206252713851498, 'recall': 0.28198494825964254, 'f1-score': 0.3658276125095347, 'support': 4252.0} | {'precision': 0.626488632262721, 'recall': 0.7956003666361137, 'f1-score': 0.7009892994144962, 'support': 2182.0} | {'precision': 0.9948045086297992, 'recall': 0.9915737733696129, 'f1-score': 0.9931865136929096, 'support': 11393.0} | {'precision': 0.8307714937118482, 'recall': 0.9259016393442623, 'f1-score': 0.8757607473737257, 'support': 12200.0} | 0.8502 | {'precision': 0.7431724764973796, 'recall': 0.7487651819024079, 'f1-score': 0.7339410432476665, 'support': 30027.0} | {'precision': 0.8342464062220922, 'recall': 0.8501681819695607, 'f1-score': 0.8354052262355796, 'support': 30027.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.2801 | {'precision': 0.5533096401599289, 'recall': 0.5858419567262465, 'f1-score': 0.5691112634224355, 'support': 4252.0} | {'precision': 0.7518549051937345, 'recall': 0.8359303391384051, 'f1-score': 0.7916666666666666, 'support': 2182.0} | {'precision': 0.9982446901878181, 'recall': 0.9983323093127359, 'f1-score': 0.9982884978277087, 'support': 11393.0} | {'precision': 0.8966253737718923, 'recall': 0.8602459016393442, 'f1-score': 0.8780589834762602, 'support': 12200.0} | 0.8720 | {'precision': 0.8000086523283435, 'recall': 0.820087626704183, 'f1-score': 0.8092813528482677, 'support': 30027.0} | {'precision': 0.8760466016724828, 'recall': 0.8720151863323009, 'f1-score': 0.8736503218070512, 'support': 30027.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.2615 | {'precision': 0.6233933161953727, 'recall': 0.45625587958607716, 'f1-score': 0.5268875611080934, 'support': 4252.0} | {'precision': 0.8267020335985853, 'recall': 0.8570119156736938, 'f1-score': 0.8415841584158417, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9987711752830686, 'f1-score': 0.9993852099069033, 'support': 11393.0} | {'precision': 0.8530962784390538, 'recall': 0.9281967213114755, 'f1-score': 0.8890633587186937, 'support': 12200.0} | 0.8830 | {'precision': 0.825797907058253, 'recall': 0.8100589229635788, 'f1-score': 0.814230072037383, 'support': 30027.0} | {'precision': 0.8743899428757883, 'recall': 0.8829719918739801, 'f1-score': 0.8761858066517598, 'support': 30027.0} |
|
76 |
+
| No log | 4.0 | 164 | 0.2551 | {'precision': 0.6193501099438065, 'recall': 0.5961900282220132, 'f1-score': 0.6075494307968844, 'support': 4252.0} | {'precision': 0.8261056247316445, 'recall': 0.8817598533455545, 'f1-score': 0.8530259365994236, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8906531347192667, 'recall': 0.8919672131147541, 'f1-score': 0.8913096895732656, 'support': 12200.0} | 0.8901 | {'precision': 0.8340272173486795, 'recall': 0.8423476138794807, 'f1-score': 0.8379054170079773, 'support': 30027.0} | {'precision': 0.8890334493695863, 'recall': 0.890132214340427, 'f1-score': 0.88948546961186, 'support': 30027.0} |
|
77 |
+
| No log | 5.0 | 205 | 0.2544 | {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0} | {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0} | 0.8921 | {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0} | {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0} |
|
78 |
|
79 |
|
80 |
### Framework versions
|
meta_data/README_s42_e5.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- essays_su_g
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: longformer-sep_tok
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: essays_su_g
|
18 |
+
type: essays_su_g
|
19 |
+
config: sep_tok
|
20 |
+
split: test
|
21 |
+
args: sep_tok
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8921304159589702
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# longformer-sep_tok
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2544
|
36 |
+
- Claim: {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0}
|
37 |
+
- Majorclaim: {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0}
|
38 |
+
- O: {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0}
|
39 |
+
- Premise: {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0}
|
40 |
+
- Accuracy: 0.8921
|
41 |
+
- Macro avg: {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0}
|
42 |
+
- Weighted avg: {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0}
|
43 |
+
|
44 |
+
## Model description
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Intended uses & limitations
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 2e-05
|
62 |
+
- train_batch_size: 8
|
63 |
+
- eval_batch_size: 8
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 5
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
73 |
+
| No log | 1.0 | 41 | 0.3491 | {'precision': 0.5206252713851498, 'recall': 0.28198494825964254, 'f1-score': 0.3658276125095347, 'support': 4252.0} | {'precision': 0.626488632262721, 'recall': 0.7956003666361137, 'f1-score': 0.7009892994144962, 'support': 2182.0} | {'precision': 0.9948045086297992, 'recall': 0.9915737733696129, 'f1-score': 0.9931865136929096, 'support': 11393.0} | {'precision': 0.8307714937118482, 'recall': 0.9259016393442623, 'f1-score': 0.8757607473737257, 'support': 12200.0} | 0.8502 | {'precision': 0.7431724764973796, 'recall': 0.7487651819024079, 'f1-score': 0.7339410432476665, 'support': 30027.0} | {'precision': 0.8342464062220922, 'recall': 0.8501681819695607, 'f1-score': 0.8354052262355796, 'support': 30027.0} |
|
74 |
+
| No log | 2.0 | 82 | 0.2801 | {'precision': 0.5533096401599289, 'recall': 0.5858419567262465, 'f1-score': 0.5691112634224355, 'support': 4252.0} | {'precision': 0.7518549051937345, 'recall': 0.8359303391384051, 'f1-score': 0.7916666666666666, 'support': 2182.0} | {'precision': 0.9982446901878181, 'recall': 0.9983323093127359, 'f1-score': 0.9982884978277087, 'support': 11393.0} | {'precision': 0.8966253737718923, 'recall': 0.8602459016393442, 'f1-score': 0.8780589834762602, 'support': 12200.0} | 0.8720 | {'precision': 0.8000086523283435, 'recall': 0.820087626704183, 'f1-score': 0.8092813528482677, 'support': 30027.0} | {'precision': 0.8760466016724828, 'recall': 0.8720151863323009, 'f1-score': 0.8736503218070512, 'support': 30027.0} |
|
75 |
+
| No log | 3.0 | 123 | 0.2615 | {'precision': 0.6233933161953727, 'recall': 0.45625587958607716, 'f1-score': 0.5268875611080934, 'support': 4252.0} | {'precision': 0.8267020335985853, 'recall': 0.8570119156736938, 'f1-score': 0.8415841584158417, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9987711752830686, 'f1-score': 0.9993852099069033, 'support': 11393.0} | {'precision': 0.8530962784390538, 'recall': 0.9281967213114755, 'f1-score': 0.8890633587186937, 'support': 12200.0} | 0.8830 | {'precision': 0.825797907058253, 'recall': 0.8100589229635788, 'f1-score': 0.814230072037383, 'support': 30027.0} | {'precision': 0.8743899428757883, 'recall': 0.8829719918739801, 'f1-score': 0.8761858066517598, 'support': 30027.0} |
|
76 |
+
| No log | 4.0 | 164 | 0.2551 | {'precision': 0.6193501099438065, 'recall': 0.5961900282220132, 'f1-score': 0.6075494307968844, 'support': 4252.0} | {'precision': 0.8261056247316445, 'recall': 0.8817598533455545, 'f1-score': 0.8530259365994236, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8906531347192667, 'recall': 0.8919672131147541, 'f1-score': 0.8913096895732656, 'support': 12200.0} | 0.8901 | {'precision': 0.8340272173486795, 'recall': 0.8423476138794807, 'f1-score': 0.8379054170079773, 'support': 30027.0} | {'precision': 0.8890334493695863, 'recall': 0.890132214340427, 'f1-score': 0.88948546961186, 'support': 30027.0} |
|
77 |
+
| No log | 5.0 | 205 | 0.2544 | {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0} | {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0} | 0.8921 | {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0} | {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0} |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.37.2
|
83 |
+
- Pytorch 2.2.0+cu121
|
84 |
+
- Datasets 2.17.0
|
85 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592324828
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f4cea23fbeef91e3ee8309a1aec320b36b5d756ecde715a23384ebe42eb129c
|
3 |
size 592324828
|