Theoreticallyhugo commited on
Commit
7979f0a
1 Parent(s): ab19f23

trainer: training complete at 2024-02-19 20:12:32.909204.

Browse files
Files changed (3) hide show
  1. README.md +15 -14
  2. meta_data/README_s42_e5.md +85 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8875012488760116
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2595
36
- - Claim: {'precision': 0.6180851063829788, 'recall': 0.5465663217309501, 'f1-score': 0.5801298052920619, 'support': 4252.0}
37
- - Majorclaim: {'precision': 0.8535564853556485, 'recall': 0.8414298808432631, 'f1-score': 0.8474498038310638, 'support': 2182.0}
38
- - O: {'precision': 0.9998243611135506, 'recall': 0.9992978144474678, 'f1-score': 0.9995610184372257, 'support': 11393.0}
39
- - Premise: {'precision': 0.8723387540262393, 'recall': 0.9101639344262296, 'f1-score': 0.8908500140398733, 'support': 12200.0}
40
- - Accuracy: 0.8875
41
- - Macro avg: {'precision': 0.8359511767196043, 'recall': 0.8243644878619776, 'f1-score': 0.8294976604000562, 'support': 30027.0}
42
- - Weighted avg: {'precision': 0.8833413217661854, 'recall': 0.8875012488760116, 'f1-score': 0.884944092263729, 'support': 30027.0}
43
 
44
  ## Model description
45
 
@@ -64,16 +64,17 @@ The following hyperparameters were used during training:
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 4
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.3497 | {'precision': 0.5091044221479004, 'recall': 0.3222013170272813, 'f1-score': 0.39464208555379515, 'support': 4252.0} | {'precision': 0.6774921064501579, 'recall': 0.6883593033913841, 'f1-score': 0.682882473289384, 'support': 2182.0} | {'precision': 0.9962913907284768, 'recall': 0.9903449486526815, 'f1-score': 0.9933092701822344, 'support': 11393.0} | {'precision': 0.8249963752356096, 'recall': 0.9327868852459016, 'f1-score': 0.875586673847811, 'support': 12200.0} | 0.8504 | {'precision': 0.7519710736405363, 'recall': 0.7334231135793121, 'f1-score': 0.7366051257183062, 'support': 30027.0} | {'precision': 0.8345390272651644, 'recall': 0.8504013054917241, 'f1-score': 0.8381455903227649, 'support': 30027.0} |
74
- | No log | 2.0 | 82 | 0.2760 | {'precision': 0.5628667225481978, 'recall': 0.6317027281279398, 'f1-score': 0.5953014184397162, 'support': 4252.0} | {'precision': 0.8442959917780062, 'recall': 0.7529789184234648, 'f1-score': 0.7960271317829457, 'support': 2182.0} | {'precision': 0.9999119795792624, 'recall': 0.9971034845958044, 'f1-score': 0.9985057572294981, 'support': 11393.0} | {'precision': 0.8920321392701708, 'recall': 0.8736065573770492, 'f1-score': 0.8827232068908398, 'support': 12200.0} | 0.8774 | {'precision': 0.8247767082939093, 'recall': 0.8138479221310645, 'f1-score': 0.8181393785857499, 'support': 30027.0} | {'precision': 0.8828838192552426, 'recall': 0.8774436340626769, 'f1-score': 0.8796533802557692, 'support': 30027.0} |
75
- | No log | 3.0 | 123 | 0.2556 | {'precision': 0.622185154295246, 'recall': 0.526340545625588, 'f1-score': 0.570263727863422, 'support': 4252.0} | {'precision': 0.8404255319148937, 'recall': 0.8327222731439047, 'f1-score': 0.8365561694290976, 'support': 2182.0} | {'precision': 0.9998242839571253, 'recall': 0.9988589484771351, 'f1-score': 0.9993413830954994, 'support': 11393.0} | {'precision': 0.8682290858295825, 'recall': 0.9170491803278689, 'f1-score': 0.8919716176353345, 'support': 12200.0} | 0.8866 | {'precision': 0.8326660139992118, 'recall': 0.8187427368936242, 'f1-score': 0.8245332245058383, 'support': 30027.0} | {'precision': 0.8812979219018255, 'recall': 0.8866353615079762, 'f1-score': 0.8831277531997092, 'support': 30027.0} |
76
- | No log | 4.0 | 164 | 0.2595 | {'precision': 0.6180851063829788, 'recall': 0.5465663217309501, 'f1-score': 0.5801298052920619, 'support': 4252.0} | {'precision': 0.8535564853556485, 'recall': 0.8414298808432631, 'f1-score': 0.8474498038310638, 'support': 2182.0} | {'precision': 0.9998243611135506, 'recall': 0.9992978144474678, 'f1-score': 0.9995610184372257, 'support': 11393.0} | {'precision': 0.8723387540262393, 'recall': 0.9101639344262296, 'f1-score': 0.8908500140398733, 'support': 12200.0} | 0.8875 | {'precision': 0.8359511767196043, 'recall': 0.8243644878619776, 'f1-score': 0.8294976604000562, 'support': 30027.0} | {'precision': 0.8833413217661854, 'recall': 0.8875012488760116, 'f1-score': 0.884944092263729, 'support': 30027.0} |
 
77
 
78
 
79
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8921304159589702
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2544
36
+ - Claim: {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0}
38
+ - O: {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0}
39
+ - Premise: {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0}
40
+ - Accuracy: 0.8921
41
+ - Macro avg: {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0}
42
+ - Weighted avg: {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0}
43
 
44
  ## Model description
45
 
 
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 5
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3491 | {'precision': 0.5206252713851498, 'recall': 0.28198494825964254, 'f1-score': 0.3658276125095347, 'support': 4252.0} | {'precision': 0.626488632262721, 'recall': 0.7956003666361137, 'f1-score': 0.7009892994144962, 'support': 2182.0} | {'precision': 0.9948045086297992, 'recall': 0.9915737733696129, 'f1-score': 0.9931865136929096, 'support': 11393.0} | {'precision': 0.8307714937118482, 'recall': 0.9259016393442623, 'f1-score': 0.8757607473737257, 'support': 12200.0} | 0.8502 | {'precision': 0.7431724764973796, 'recall': 0.7487651819024079, 'f1-score': 0.7339410432476665, 'support': 30027.0} | {'precision': 0.8342464062220922, 'recall': 0.8501681819695607, 'f1-score': 0.8354052262355796, 'support': 30027.0} |
74
+ | No log | 2.0 | 82 | 0.2801 | {'precision': 0.5533096401599289, 'recall': 0.5858419567262465, 'f1-score': 0.5691112634224355, 'support': 4252.0} | {'precision': 0.7518549051937345, 'recall': 0.8359303391384051, 'f1-score': 0.7916666666666666, 'support': 2182.0} | {'precision': 0.9982446901878181, 'recall': 0.9983323093127359, 'f1-score': 0.9982884978277087, 'support': 11393.0} | {'precision': 0.8966253737718923, 'recall': 0.8602459016393442, 'f1-score': 0.8780589834762602, 'support': 12200.0} | 0.8720 | {'precision': 0.8000086523283435, 'recall': 0.820087626704183, 'f1-score': 0.8092813528482677, 'support': 30027.0} | {'precision': 0.8760466016724828, 'recall': 0.8720151863323009, 'f1-score': 0.8736503218070512, 'support': 30027.0} |
75
+ | No log | 3.0 | 123 | 0.2615 | {'precision': 0.6233933161953727, 'recall': 0.45625587958607716, 'f1-score': 0.5268875611080934, 'support': 4252.0} | {'precision': 0.8267020335985853, 'recall': 0.8570119156736938, 'f1-score': 0.8415841584158417, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9987711752830686, 'f1-score': 0.9993852099069033, 'support': 11393.0} | {'precision': 0.8530962784390538, 'recall': 0.9281967213114755, 'f1-score': 0.8890633587186937, 'support': 12200.0} | 0.8830 | {'precision': 0.825797907058253, 'recall': 0.8100589229635788, 'f1-score': 0.814230072037383, 'support': 30027.0} | {'precision': 0.8743899428757883, 'recall': 0.8829719918739801, 'f1-score': 0.8761858066517598, 'support': 30027.0} |
76
+ | No log | 4.0 | 164 | 0.2551 | {'precision': 0.6193501099438065, 'recall': 0.5961900282220132, 'f1-score': 0.6075494307968844, 'support': 4252.0} | {'precision': 0.8261056247316445, 'recall': 0.8817598533455545, 'f1-score': 0.8530259365994236, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8906531347192667, 'recall': 0.8919672131147541, 'f1-score': 0.8913096895732656, 'support': 12200.0} | 0.8901 | {'precision': 0.8340272173486795, 'recall': 0.8423476138794807, 'f1-score': 0.8379054170079773, 'support': 30027.0} | {'precision': 0.8890334493695863, 'recall': 0.890132214340427, 'f1-score': 0.88948546961186, 'support': 30027.0} |
77
+ | No log | 5.0 | 205 | 0.2544 | {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0} | {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0} | 0.8921 | {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0} | {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0} |
78
 
79
 
80
  ### Framework versions
meta_data/README_s42_e5.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-sep_tok
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: sep_tok
20
+ split: test
21
+ args: sep_tok
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8921304159589702
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-sep_tok
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2544
36
+ - Claim: {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0}
38
+ - O: {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0}
39
+ - Premise: {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0}
40
+ - Accuracy: 0.8921
41
+ - Macro avg: {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0}
42
+ - Weighted avg: {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0}
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 5
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3491 | {'precision': 0.5206252713851498, 'recall': 0.28198494825964254, 'f1-score': 0.3658276125095347, 'support': 4252.0} | {'precision': 0.626488632262721, 'recall': 0.7956003666361137, 'f1-score': 0.7009892994144962, 'support': 2182.0} | {'precision': 0.9948045086297992, 'recall': 0.9915737733696129, 'f1-score': 0.9931865136929096, 'support': 11393.0} | {'precision': 0.8307714937118482, 'recall': 0.9259016393442623, 'f1-score': 0.8757607473737257, 'support': 12200.0} | 0.8502 | {'precision': 0.7431724764973796, 'recall': 0.7487651819024079, 'f1-score': 0.7339410432476665, 'support': 30027.0} | {'precision': 0.8342464062220922, 'recall': 0.8501681819695607, 'f1-score': 0.8354052262355796, 'support': 30027.0} |
74
+ | No log | 2.0 | 82 | 0.2801 | {'precision': 0.5533096401599289, 'recall': 0.5858419567262465, 'f1-score': 0.5691112634224355, 'support': 4252.0} | {'precision': 0.7518549051937345, 'recall': 0.8359303391384051, 'f1-score': 0.7916666666666666, 'support': 2182.0} | {'precision': 0.9982446901878181, 'recall': 0.9983323093127359, 'f1-score': 0.9982884978277087, 'support': 11393.0} | {'precision': 0.8966253737718923, 'recall': 0.8602459016393442, 'f1-score': 0.8780589834762602, 'support': 12200.0} | 0.8720 | {'precision': 0.8000086523283435, 'recall': 0.820087626704183, 'f1-score': 0.8092813528482677, 'support': 30027.0} | {'precision': 0.8760466016724828, 'recall': 0.8720151863323009, 'f1-score': 0.8736503218070512, 'support': 30027.0} |
75
+ | No log | 3.0 | 123 | 0.2615 | {'precision': 0.6233933161953727, 'recall': 0.45625587958607716, 'f1-score': 0.5268875611080934, 'support': 4252.0} | {'precision': 0.8267020335985853, 'recall': 0.8570119156736938, 'f1-score': 0.8415841584158417, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9987711752830686, 'f1-score': 0.9993852099069033, 'support': 11393.0} | {'precision': 0.8530962784390538, 'recall': 0.9281967213114755, 'f1-score': 0.8890633587186937, 'support': 12200.0} | 0.8830 | {'precision': 0.825797907058253, 'recall': 0.8100589229635788, 'f1-score': 0.814230072037383, 'support': 30027.0} | {'precision': 0.8743899428757883, 'recall': 0.8829719918739801, 'f1-score': 0.8761858066517598, 'support': 30027.0} |
76
+ | No log | 4.0 | 164 | 0.2551 | {'precision': 0.6193501099438065, 'recall': 0.5961900282220132, 'f1-score': 0.6075494307968844, 'support': 4252.0} | {'precision': 0.8261056247316445, 'recall': 0.8817598533455545, 'f1-score': 0.8530259365994236, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8906531347192667, 'recall': 0.8919672131147541, 'f1-score': 0.8913096895732656, 'support': 12200.0} | 0.8901 | {'precision': 0.8340272173486795, 'recall': 0.8423476138794807, 'f1-score': 0.8379054170079773, 'support': 30027.0} | {'precision': 0.8890334493695863, 'recall': 0.890132214340427, 'f1-score': 0.88948546961186, 'support': 30027.0} |
77
+ | No log | 5.0 | 205 | 0.2544 | {'precision': 0.618502404396611, 'recall': 0.6352304797742239, 'f1-score': 0.6267548439494142, 'support': 4252.0} | {'precision': 0.8701787394167451, 'recall': 0.847846012832264, 'f1-score': 0.8588672237697308, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9994733608356008, 'f1-score': 0.9997366110623354, 'support': 11393.0} | {'precision': 0.8932246645262205, 'recall': 0.889344262295082, 'f1-score': 0.8912802398652812, 'support': 12200.0} | 0.8921 | {'precision': 0.8454764520848941, 'recall': 0.8429735289342927, 'f1-score': 0.8441597296616904, 'support': 30027.0} | {'precision': 0.8931609265035342, 'recall': 0.8921304159589702, 'f1-score': 0.8926175780107263, 'support': 30027.0} |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.37.2
83
+ - Pytorch 2.2.0+cu121
84
+ - Datasets 2.17.0
85
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c189bbb295db7cb3313628a0dd4558b24111b337eb188511c9e73f7a763fc629
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f4cea23fbeef91e3ee8309a1aec320b36b5d756ecde715a23384ebe42eb129c
3
  size 592324828