Theoreticallyhugo commited on
Commit
91030e4
1 Parent(s): ad019da

trainer: training complete at 2024-02-19 21:07:39.915053.

Browse files
Files changed (3) hide show
  1. README.md +17 -16
  2. meta_data/README_s42_e7.md +87 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8949278982249309
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,14 +32,14 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2702
36
- - Claim: {'precision': 0.6345128453708192, 'recall': 0.6157102539981185, 'f1-score': 0.6249701599427071, 'support': 4252.0}
37
- - Majorclaim: {'precision': 0.8918156161806209, 'recall': 0.8689275893675527, 'f1-score': 0.8802228412256268, 'support': 2182.0}
38
- - O: {'precision': 1.0, 'recall': 0.9992100412534012, 'f1-score': 0.9996048645563507, 'support': 11393.0}
39
- - Premise: {'precision': 0.8856428052618837, 'recall': 0.8995081967213114, 'f1-score': 0.892521654263755, 'support': 12200.0}
40
- - Accuracy: 0.8949
41
- - Macro avg: {'precision': 0.8529928167033309, 'recall': 0.8458390203350961, 'f1-score': 0.84932987999711, 'support': 30027.0}
42
- - Weighted avg: {'precision': 0.8939198893401877, 'recall': 0.8949278982249309, 'f1-score': 0.8943711247723389, 'support': 30027.0}
43
 
44
  ## Model description
45
 
@@ -64,18 +64,19 @@ The following hyperparameters were used during training:
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 6
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
- | No log | 1.0 | 41 | 0.3401 | {'precision': 0.5311909262759924, 'recall': 0.3304327375352775, 'f1-score': 0.40742351747136435, 'support': 4252.0} | {'precision': 0.6367229608336328, 'recall': 0.8120989917506874, 'f1-score': 0.7137965760322256, 'support': 2182.0} | {'precision': 0.9957709251101322, 'recall': 0.9920126393399455, 'f1-score': 0.9938882293452932, 'support': 11393.0} | {'precision': 0.842705109819609, 'recall': 0.9151639344262295, 'f1-score': 0.8774411568234507, 'support': 12200.0} | 0.8540 | {'precision': 0.7515974805098417, 'recall': 0.7624270757630349, 'f1-score': 0.7481373699180834, 'support': 30027.0} | {'precision': 0.8417015955188155, 'recall': 0.8540313717654111, 'f1-score': 0.8431751302283804, 'support': 30027.0} |
74
- | No log | 2.0 | 82 | 0.2705 | {'precision': 0.5723863918549789, 'recall': 0.5420978363123237, 'f1-score': 0.5568305350887789, 'support': 4252.0} | {'precision': 0.8547959724430313, 'recall': 0.7392300641613199, 'f1-score': 0.7928237896289015, 'support': 2182.0} | {'precision': 0.9999120492524186, 'recall': 0.9978934433424033, 'f1-score': 0.9989017264859641, 'support': 11393.0} | {'precision': 0.8669073216667974, 'recall': 0.9054918032786885, 'f1-score': 0.8857795774365553, 'support': 12200.0} | 0.8770 | {'precision': 0.8235004338043066, 'recall': 0.7961782867736839, 'f1-score': 0.8085839071600499, 'support': 30027.0} | {'precision': 0.8747866603891763, 'recall': 0.8770106903786592, 'f1-score': 0.875364943509119, 'support': 30027.0} |
75
- | No log | 3.0 | 123 | 0.2601 | {'precision': 0.6572898799313893, 'recall': 0.4506114769520226, 'f1-score': 0.5346728059160039, 'support': 4252.0} | {'precision': 0.7966573816155988, 'recall': 0.9175068744271311, 'f1-score': 0.8528221512247072, 'support': 2182.0} | {'precision': 0.9997364490907493, 'recall': 0.9988589484771351, 'f1-score': 0.9992975061468212, 'support': 11393.0} | {'precision': 0.8583535108958837, 'recall': 0.9298360655737705, 'f1-score': 0.8926660371419579, 'support': 12200.0} | 0.8873 | {'precision': 0.8280093053834052, 'recall': 0.8242033413575147, 'f1-score': 0.8198646251073725, 'support': 30027.0} | {'precision': 0.8790426340817996, 'recall': 0.8872681253538482, 'f1-score': 0.8795353796712885, 'support': 30027.0} |
76
- | No log | 4.0 | 164 | 0.2546 | {'precision': 0.6344463971880492, 'recall': 0.5943085606773283, 'f1-score': 0.6137219186399513, 'support': 4252.0} | {'precision': 0.8699369936993699, 'recall': 0.885884509624198, 'f1-score': 0.8778383287920073, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9992978144474678, 'f1-score': 0.9996487839143033, 'support': 11393.0} | {'precision': 0.8826083460641634, 'recall': 0.8997540983606558, 'f1-score': 0.8910987539067257, 'support': 12200.0} | 0.8933 | {'precision': 0.8467479342378956, 'recall': 0.8448112457774125, 'f1-score': 0.845576946313247, 'support': 30027.0} | {'precision': 0.8910877018376263, 'recall': 0.8932627302094781, 'f1-score': 0.8920435682645267, 'support': 30027.0} |
77
- | No log | 5.0 | 205 | 0.2814 | {'precision': 0.6258696212316414, 'recall': 0.5712605832549389, 'f1-score': 0.5973195622771426, 'support': 4252.0} | {'precision': 0.868504292815183, 'recall': 0.8808432630614116, 'f1-score': 0.8746302616609783, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9992100412534012, 'f1-score': 0.9996048645563507, 'support': 11393.0} | {'precision': 0.8768826201290939, 'recall': 0.9019672131147541, 'f1-score': 0.8892480504262799, 'support': 12200.0} | 0.8905 | {'precision': 0.8428141335439796, 'recall': 0.8383202751711265, 'f1-score': 0.8402006847301878, 'support': 30027.0} | {'precision': 0.8874427003022152, 'recall': 0.8904985513038266, 'f1-score': 0.8887191676437134, 'support': 30027.0} |
78
- | No log | 6.0 | 246 | 0.2702 | {'precision': 0.6345128453708192, 'recall': 0.6157102539981185, 'f1-score': 0.6249701599427071, 'support': 4252.0} | {'precision': 0.8918156161806209, 'recall': 0.8689275893675527, 'f1-score': 0.8802228412256268, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9992100412534012, 'f1-score': 0.9996048645563507, 'support': 11393.0} | {'precision': 0.8856428052618837, 'recall': 0.8995081967213114, 'f1-score': 0.892521654263755, 'support': 12200.0} | 0.8949 | {'precision': 0.8529928167033309, 'recall': 0.8458390203350961, 'f1-score': 0.84932987999711, 'support': 30027.0} | {'precision': 0.8939198893401877, 'recall': 0.8949278982249309, 'f1-score': 0.8943711247723389, 'support': 30027.0} |
 
79
 
80
 
81
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8970593132847104
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2727
36
+ - Claim: {'precision': 0.6323296354992076, 'recall': 0.6568673565380997, 'f1-score': 0.6443649786595916, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.8782371649250341, 'recall': 0.885884509624198, 'f1-score': 0.8820442619210586, 'support': 2182.0}
38
+ - O: {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0}
39
+ - Premise: {'precision': 0.9002495840266223, 'recall': 0.8869672131147541, 'f1-score': 0.8935590421139553, 'support': 12200.0}
40
+ - Accuracy: 0.8971
41
+ - Macro avg: {'precision': 0.852704096112716, 'recall': 0.8573419966251964, 'f1-score': 0.8549481763711319, 'support': 30027.0}
42
+ - Weighted avg: {'precision': 0.8985587647495203, 'recall': 0.8970593132847104, 'f1-score': 0.897754701815305, 'support': 30027.0}
43
 
44
  ## Model description
45
 
 
64
  - seed: 42
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 7
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
  |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3545 | {'precision': 0.5265911072362686, 'recall': 0.28410159924741296, 'f1-score': 0.3690803544149099, 'support': 4252.0} | {'precision': 0.5903767014878126, 'recall': 0.8547204399633364, 'f1-score': 0.6983710915558883, 'support': 2182.0} | {'precision': 0.9956778689247596, 'recall': 0.9907838146230141, 'f1-score': 0.9932248130224374, 'support': 11393.0} | {'precision': 0.8420336934350684, 'recall': 0.9136065573770492, 'f1-score': 0.8763612061170736, 'support': 12200.0} | 0.8495 | {'precision': 0.7386698427709772, 'recall': 0.7608031028027031, 'f1-score': 0.7342593662775774, 'support': 30027.0} | {'precision': 0.837374242221422, 'recall': 0.8494688114030706, 'f1-score': 0.8359340726059904, 'support': 30027.0} |
74
+ | No log | 2.0 | 82 | 0.2887 | {'precision': 0.5331588132635253, 'recall': 0.5747883349012229, 'f1-score': 0.5531914893617021, 'support': 4252.0} | {'precision': 0.9024745269286754, 'recall': 0.5682859761686526, 'f1-score': 0.6974128233970753, 'support': 2182.0} | {'precision': 0.9994723419224343, 'recall': 0.997542350566137, 'f1-score': 0.9985064136355649, 'support': 11393.0} | {'precision': 0.8662781540400063, 'recall': 0.9016393442622951, 'f1-score': 0.8836051088440838, 'support': 12200.0} | 0.8675 | {'precision': 0.8253459590386604, 'recall': 0.7605640014745769, 'f1-score': 0.7831789588096065, 'support': 30027.0} | {'precision': 0.8722740387839361, 'recall': 0.8675192326905785, 'f1-score': 0.8668828351772135, 'support': 30027.0} |
75
+ | No log | 3.0 | 123 | 0.2610 | {'precision': 0.6448462929475588, 'recall': 0.4193320790216369, 'f1-score': 0.5081943850648425, 'support': 4252.0} | {'precision': 0.8409090909090909, 'recall': 0.847846012832264, 'f1-score': 0.8443633044272022, 'support': 2182.0} | {'precision': 0.9999121959785758, 'recall': 0.9995611340296673, 'f1-score': 0.9997366341848828, 'support': 11393.0} | {'precision': 0.8441453960359834, 'recall': 0.9460655737704918, 'f1-score': 0.8922042283461523, 'support': 12200.0} | 0.8846 | {'precision': 0.8324532439678022, 'recall': 0.803201199913515, 'f1-score': 0.81112463800577, 'support': 30027.0} | {'precision': 0.8747901406867009, 'recall': 0.8846371598894328, 'f1-score': 0.8751501753304457, 'support': 30027.0} |
76
+ | No log | 4.0 | 164 | 0.2530 | {'precision': 0.6281010374379793, 'recall': 0.6549858889934148, 'f1-score': 0.6412618005986644, 'support': 4252.0} | {'precision': 0.8315485996705108, 'recall': 0.9252978918423465, 'f1-score': 0.8759219088937094, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0} | {'precision': 0.9083729619565217, 'recall': 0.8768032786885246, 'f1-score': 0.8923089756423088, 'support': 12200.0} | 0.8955 | {'precision': 0.8420056497662529, 'recall': 0.8641839916870049, 'f1-score': 0.8523292769811512, 'support': 30027.0} | {'precision': 0.8978677454136914, 'recall': 0.8955273587104939, 'f1-score': 0.896362471543389, 'support': 30027.0} |
77
+ | No log | 5.0 | 205 | 0.2707 | {'precision': 0.6235240690281563, 'recall': 0.6458137347130762, 'f1-score': 0.6344731977818855, 'support': 4252.0} | {'precision': 0.873358348968105, 'recall': 0.8533455545371219, 'f1-score': 0.8632359758924432, 'support': 2182.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11393.0} | {'precision': 0.8975037196230782, 'recall': 0.89, 'f1-score': 0.8937361099678987, 'support': 12200.0} | 0.8945 | {'precision': 0.848596534404835, 'recall': 0.8472898223125496, 'f1-score': 0.8478613209105568, 'support': 30027.0} | {'precision': 0.8958416637811863, 'recall': 0.8944949545409132, 'f1-score': 0.8951257694066757, 'support': 30027.0} |
78
+ | No log | 6.0 | 246 | 0.2700 | {'precision': 0.631960692559663, 'recall': 0.6352304797742239, 'f1-score': 0.6335913675815154, 'support': 4252.0} | {'precision': 0.885956644674835, 'recall': 0.8615948670944088, 'f1-score': 0.8736059479553903, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9995611340296673, 'f1-score': 0.9997805188534304, 'support': 11393.0} | {'precision': 0.8923466470636282, 'recall': 0.8954918032786885, 'f1-score': 0.8939164586998323, 'support': 12200.0} | 0.8957 | {'precision': 0.8525659960745315, 'recall': 0.8479695710442472, 'f1-score': 0.850223573272542, 'support': 30027.0} | {'precision': 0.8958565077303907, 'recall': 0.8956605721517301, 'f1-score': 0.8957444606797332, 'support': 30027.0} |
79
+ | No log | 7.0 | 287 | 0.2727 | {'precision': 0.6323296354992076, 'recall': 0.6568673565380997, 'f1-score': 0.6443649786595916, 'support': 4252.0} | {'precision': 0.8782371649250341, 'recall': 0.885884509624198, 'f1-score': 0.8820442619210586, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0} | {'precision': 0.9002495840266223, 'recall': 0.8869672131147541, 'f1-score': 0.8935590421139553, 'support': 12200.0} | 0.8971 | {'precision': 0.852704096112716, 'recall': 0.8573419966251964, 'f1-score': 0.8549481763711319, 'support': 30027.0} | {'precision': 0.8985587647495203, 'recall': 0.8970593132847104, 'f1-score': 0.897754701815305, 'support': 30027.0} |
80
 
81
 
82
  ### Framework versions
meta_data/README_s42_e7.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-sep_tok
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: sep_tok
20
+ split: test
21
+ args: sep_tok
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8970593132847104
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-sep_tok
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2727
36
+ - Claim: {'precision': 0.6323296354992076, 'recall': 0.6568673565380997, 'f1-score': 0.6443649786595916, 'support': 4252.0}
37
+ - Majorclaim: {'precision': 0.8782371649250341, 'recall': 0.885884509624198, 'f1-score': 0.8820442619210586, 'support': 2182.0}
38
+ - O: {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0}
39
+ - Premise: {'precision': 0.9002495840266223, 'recall': 0.8869672131147541, 'f1-score': 0.8935590421139553, 'support': 12200.0}
40
+ - Accuracy: 0.8971
41
+ - Macro avg: {'precision': 0.852704096112716, 'recall': 0.8573419966251964, 'f1-score': 0.8549481763711319, 'support': 30027.0}
42
+ - Weighted avg: {'precision': 0.8985587647495203, 'recall': 0.8970593132847104, 'f1-score': 0.897754701815305, 'support': 30027.0}
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 7
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | O | Premise | Accuracy | Macro avg | Weighted avg |
72
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
73
+ | No log | 1.0 | 41 | 0.3545 | {'precision': 0.5265911072362686, 'recall': 0.28410159924741296, 'f1-score': 0.3690803544149099, 'support': 4252.0} | {'precision': 0.5903767014878126, 'recall': 0.8547204399633364, 'f1-score': 0.6983710915558883, 'support': 2182.0} | {'precision': 0.9956778689247596, 'recall': 0.9907838146230141, 'f1-score': 0.9932248130224374, 'support': 11393.0} | {'precision': 0.8420336934350684, 'recall': 0.9136065573770492, 'f1-score': 0.8763612061170736, 'support': 12200.0} | 0.8495 | {'precision': 0.7386698427709772, 'recall': 0.7608031028027031, 'f1-score': 0.7342593662775774, 'support': 30027.0} | {'precision': 0.837374242221422, 'recall': 0.8494688114030706, 'f1-score': 0.8359340726059904, 'support': 30027.0} |
74
+ | No log | 2.0 | 82 | 0.2887 | {'precision': 0.5331588132635253, 'recall': 0.5747883349012229, 'f1-score': 0.5531914893617021, 'support': 4252.0} | {'precision': 0.9024745269286754, 'recall': 0.5682859761686526, 'f1-score': 0.6974128233970753, 'support': 2182.0} | {'precision': 0.9994723419224343, 'recall': 0.997542350566137, 'f1-score': 0.9985064136355649, 'support': 11393.0} | {'precision': 0.8662781540400063, 'recall': 0.9016393442622951, 'f1-score': 0.8836051088440838, 'support': 12200.0} | 0.8675 | {'precision': 0.8253459590386604, 'recall': 0.7605640014745769, 'f1-score': 0.7831789588096065, 'support': 30027.0} | {'precision': 0.8722740387839361, 'recall': 0.8675192326905785, 'f1-score': 0.8668828351772135, 'support': 30027.0} |
75
+ | No log | 3.0 | 123 | 0.2610 | {'precision': 0.6448462929475588, 'recall': 0.4193320790216369, 'f1-score': 0.5081943850648425, 'support': 4252.0} | {'precision': 0.8409090909090909, 'recall': 0.847846012832264, 'f1-score': 0.8443633044272022, 'support': 2182.0} | {'precision': 0.9999121959785758, 'recall': 0.9995611340296673, 'f1-score': 0.9997366341848828, 'support': 11393.0} | {'precision': 0.8441453960359834, 'recall': 0.9460655737704918, 'f1-score': 0.8922042283461523, 'support': 12200.0} | 0.8846 | {'precision': 0.8324532439678022, 'recall': 0.803201199913515, 'f1-score': 0.81112463800577, 'support': 30027.0} | {'precision': 0.8747901406867009, 'recall': 0.8846371598894328, 'f1-score': 0.8751501753304457, 'support': 30027.0} |
76
+ | No log | 4.0 | 164 | 0.2530 | {'precision': 0.6281010374379793, 'recall': 0.6549858889934148, 'f1-score': 0.6412618005986644, 'support': 4252.0} | {'precision': 0.8315485996705108, 'recall': 0.9252978918423465, 'f1-score': 0.8759219088937094, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0} | {'precision': 0.9083729619565217, 'recall': 0.8768032786885246, 'f1-score': 0.8923089756423088, 'support': 12200.0} | 0.8955 | {'precision': 0.8420056497662529, 'recall': 0.8641839916870049, 'f1-score': 0.8523292769811512, 'support': 30027.0} | {'precision': 0.8978677454136914, 'recall': 0.8955273587104939, 'f1-score': 0.896362471543389, 'support': 30027.0} |
77
+ | No log | 5.0 | 205 | 0.2707 | {'precision': 0.6235240690281563, 'recall': 0.6458137347130762, 'f1-score': 0.6344731977818855, 'support': 4252.0} | {'precision': 0.873358348968105, 'recall': 0.8533455545371219, 'f1-score': 0.8632359758924432, 'support': 2182.0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11393.0} | {'precision': 0.8975037196230782, 'recall': 0.89, 'f1-score': 0.8937361099678987, 'support': 12200.0} | 0.8945 | {'precision': 0.848596534404835, 'recall': 0.8472898223125496, 'f1-score': 0.8478613209105568, 'support': 30027.0} | {'precision': 0.8958416637811863, 'recall': 0.8944949545409132, 'f1-score': 0.8951257694066757, 'support': 30027.0} |
78
+ | No log | 6.0 | 246 | 0.2700 | {'precision': 0.631960692559663, 'recall': 0.6352304797742239, 'f1-score': 0.6335913675815154, 'support': 4252.0} | {'precision': 0.885956644674835, 'recall': 0.8615948670944088, 'f1-score': 0.8736059479553903, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9995611340296673, 'f1-score': 0.9997805188534304, 'support': 11393.0} | {'precision': 0.8923466470636282, 'recall': 0.8954918032786885, 'f1-score': 0.8939164586998323, 'support': 12200.0} | 0.8957 | {'precision': 0.8525659960745315, 'recall': 0.8479695710442472, 'f1-score': 0.850223573272542, 'support': 30027.0} | {'precision': 0.8958565077303907, 'recall': 0.8956605721517301, 'f1-score': 0.8957444606797332, 'support': 30027.0} |
79
+ | No log | 7.0 | 287 | 0.2727 | {'precision': 0.6323296354992076, 'recall': 0.6568673565380997, 'f1-score': 0.6443649786595916, 'support': 4252.0} | {'precision': 0.8782371649250341, 'recall': 0.885884509624198, 'f1-score': 0.8820442619210586, 'support': 2182.0} | {'precision': 1.0, 'recall': 0.9996489072237339, 'f1-score': 0.9998244227899218, 'support': 11393.0} | {'precision': 0.9002495840266223, 'recall': 0.8869672131147541, 'f1-score': 0.8935590421139553, 'support': 12200.0} | 0.8971 | {'precision': 0.852704096112716, 'recall': 0.8573419966251964, 'f1-score': 0.8549481763711319, 'support': 30027.0} | {'precision': 0.8985587647495203, 'recall': 0.8970593132847104, 'f1-score': 0.897754701815305, 'support': 30027.0} |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.37.2
85
+ - Pytorch 2.2.0+cu121
86
+ - Datasets 2.17.0
87
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc698757774b7ab24c2be6453bd23341bfac16c97f0ea475c77429e86f32140f
3
  size 592324828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8bdaf560c275985fcaede5ea19cf7085825cf846240b3a97bc11c8001c01eef
3
  size 592324828