File size: 2,333 Bytes
8321124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- vivos
metrics:
- wer
model-index:
- name: wav2vec2-augmented-vivos
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: vivos
      type: vivos
      config: default
      split: None
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.2447200155008719
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-augmented-vivos

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4403
- Wer: 0.2447

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.6691        | 2.0   | 146  | 4.0324          | 1.0    |
| 3.4795        | 4.0   | 292  | 3.6294          | 1.0    |
| 3.4178        | 6.0   | 438  | 3.4910          | 1.0    |
| 1.8415        | 8.0   | 584  | 0.7926          | 0.5287 |
| 0.5336        | 10.0  | 730  | 0.5809          | 0.3677 |
| 0.3349        | 12.0  | 876  | 0.4679          | 0.2853 |
| 0.2424        | 14.0  | 1022 | 0.4440          | 0.2680 |
| 0.2193        | 16.0  | 1168 | 0.4420          | 0.2536 |
| 0.1627        | 18.0  | 1314 | 0.4373          | 0.2455 |
| 0.1532        | 20.0  | 1460 | 0.4403          | 0.2447 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1