--- base_model: nghuyong/ernie-2.0-large-en tags: - generated_from_trainer metrics: - spearmanr model-index: - name: ernie-2.0-large-en-finetuned-stsb results: [] --- # ernie-2.0-large-en-finetuned-stsb This model is a fine-tuned version of [nghuyong/ernie-2.0-large-en](https://huggingface.co/nghuyong/ernie-2.0-large-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - Pearson: 0.9239 - Spearmanr: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.4713 | 0.9092 | 0.9111 | | 0.5167 | 2.0 | 720 | 0.4516 | 0.9180 | 0.9179 | | 0.2 | 3.0 | 1080 | 0.3402 | 0.9238 | 0.9211 | | 0.2 | 4.0 | 1440 | 0.3452 | 0.9238 | 0.9226 | | 0.1002 | 5.0 | 1800 | 0.3323 | 0.9239 | 0.9222 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2