Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
language: en
|
3 |
tags:
|
4 |
- qa
|
5 |
-
- question
|
6 |
- answering
|
7 |
- SQuAD
|
8 |
- data2text
|
@@ -15,16 +15,16 @@ datasets:
|
|
15 |
model-index:
|
16 |
- name: t5-qa_webnlg_synth-en
|
17 |
results:
|
18 |
-
- task:
|
19 |
name: Data Question Answering
|
20 |
type: extractive-qa
|
21 |
widget:
|
22 |
-
- text: "What is the food type at The Eagle? </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [
|
23 |
---
|
24 |
# t5-qa_webnlg_synth-en
|
25 |
|
26 |
## Model description
|
27 |
-
This model is a *Data Question Answering* model based on T5-small, that
|
28 |
It is actually a component of [QuestEval](https://github.com/recitalAI/QuestEval) metric but can be used independently as it is, for QA only.
|
29 |
|
30 |
|
@@ -43,7 +43,7 @@ You can play with the model using the inference API, the text input format shoul
|
|
43 |
|
44 |
where CONTEXT is a structured table that is linearised this way:
|
45 |
|
46 |
-
`CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [
|
47 |
|
48 |
|
49 |
## Training data
|
@@ -58,5 +58,4 @@ The model was trained on synthetic data as described in [Data-QuestEval: A Refer
|
|
58 |
journal={arXiv preprint arXiv:2104.07555},
|
59 |
year={2021}
|
60 |
}
|
61 |
-
}
|
62 |
```
|
|
|
2 |
language: en
|
3 |
tags:
|
4 |
- qa
|
5 |
+
- question
|
6 |
- answering
|
7 |
- SQuAD
|
8 |
- data2text
|
|
|
15 |
model-index:
|
16 |
- name: t5-qa_webnlg_synth-en
|
17 |
results:
|
18 |
+
- task:
|
19 |
name: Data Question Answering
|
20 |
type: extractive-qa
|
21 |
widget:
|
22 |
+
- text: "What is the food type at The Eagle? </s> name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"
|
23 |
---
|
24 |
# t5-qa_webnlg_synth-en
|
25 |
|
26 |
## Model description
|
27 |
+
This model is a *Data Question Answering* model based on T5-small, that answers questions given a structured table as input.
|
28 |
It is actually a component of [QuestEval](https://github.com/recitalAI/QuestEval) metric but can be used independently as it is, for QA only.
|
29 |
|
30 |
|
|
|
43 |
|
44 |
where CONTEXT is a structured table that is linearised this way:
|
45 |
|
46 |
+
`CONTEXT = "name [ The Eagle ] , eatType [ coffee shop ] , food [ French ] , priceRange [ £ 2 0 - 2 5 ]"`
|
47 |
|
48 |
|
49 |
## Training data
|
|
|
58 |
journal={arXiv preprint arXiv:2104.07555},
|
59 |
year={2021}
|
60 |
}
|
|
|
61 |
```
|