File size: 1,840 Bytes
c750bdb
aff14f0
c750bdb
aff14f0
c750bdb
 
 
aff14f0
 
 
 
 
 
 
 
 
 
 
 
 
c750bdb
4db621e
 
 
a7a4ec6
4db621e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c909801
4db621e
 
 
 
 
 
 
 
28da8ef
4db621e
 
28da8ef
 
4db621e
28da8ef
 
4db621e
02e1b80
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
  results:
  - metrics:
    - type: mean_reward
      value: 271.51 +/- 16.73
      name: mean_reward
    task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLander-v2
      type: LunarLander-v2
---
# ppo-LunarLander-v2

This is a pre-trained model of a PPO agent playing LunarLander-v2 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.

### Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:

```
pip install stable-baselines3
pip install huggingface_sb3
```

Then, you can use the model like this:

```python
import gym

from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy

# Retrieve the model from the hub
## repo_id =  id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip")
model = PPO.load(checkpoint)

# Evaluate the agent
eval_env = gym.make('LunarLander-v2')
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
 
# Watch the agent play
obs = eval_env.reset()
for i in range(1000):
    action, _state = model.predict(obs)
    obs, reward, done, info = eval_env.step(action)
    eval_env.render()
    if done:
        obs = eval_env.reset()
eval_env.close()
```

### Evaluation Results
Mean_reward: 241.94 +/- 23.6