|
import os
|
|
from safetensors.torch import load_file, save_file
|
|
from transformers import AutoTokenizer, AutoModel
|
|
from diffusers import StableDiffusionPipeline
|
|
import torch
|
|
|
|
|
|
file1_path = "hansika motwaniF1.safetensors"
|
|
file2_path = "lora.safetensors"
|
|
file3_path = "NSFW_master.safetensors"
|
|
merged_file_path = "merged_lora.safetensors"
|
|
|
|
def load_tensors(file_path):
|
|
return load_file(file_path)
|
|
|
|
try:
|
|
tensors1 = load_tensors(file1_path)
|
|
tensors2 = load_tensors(file2_path)
|
|
tensors3 = load_tensors(file3_path)
|
|
|
|
|
|
merged_tensors = {**tensors1, **tensors2, **tensors3}
|
|
|
|
|
|
save_file(merged_tensors, merged_file_path)
|
|
|
|
print(f"Merged file saved at: {merged_file_path}")
|
|
|
|
|
|
merged_load = load_file(merged_file_path)
|
|
print(merged_load.keys())
|
|
|
|
try:
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Tjay143/HijabGirls")
|
|
model = AutoModel.from_pretrained("Tjay143/HijabGirls", from_tf=False, from_safetensors=True)
|
|
pipeline = StableDiffusionPipeline.from_pretrained("Tjay143/HijabGirls", torch_dtype=torch.float16)
|
|
print("It is successfully loaded!")
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|