import os from safetensors.torch import load_file, save_file from transformers import AutoTokenizer, AutoModel from diffusers import StableDiffusionPipeline import torch # Paths to your LoRA files file1_path = "hansika motwaniF1.safetensors" file2_path = "lora.safetensors" file3_path = "NSFW_master.safetensors" merged_file_path = "merged_lora.safetensors" def load_tensors(file_path): return load_file(file_path) try: tensors1 = load_tensors(file1_path) tensors2 = load_tensors(file2_path) tensors3 = load_tensors(file3_path) # Merge tensors merged_tensors = {**tensors1, **tensors2, **tensors3} # Save merged tensors save_file(merged_tensors, merged_file_path) print(f"Merged file saved at: {merged_file_path}") # Validate the merged file merged_load = load_file(merged_file_path) print(merged_load.keys()) try: # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("Tjay143/HijabGirls") model = AutoModel.from_pretrained("Tjay143/HijabGirls", from_tf=False, from_safetensors=True) pipeline = StableDiffusionPipeline.from_pretrained("Tjay143/HijabGirls", torch_dtype=torch.float16) print("It is successfully loaded!") except Exception as e: print(f"Error: {e}") except Exception as e: print(f"An error occurred: {e}")