TnTerry commited on
Commit
31b2722
1 Parent(s): c1ea45f

Upload 5 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-1.5-7b-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-1.5-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "multi_modal_projector"
19
+ ],
20
+ "peft_type": "LORA",
21
+ "r": 32,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "q_proj",
26
+ "k_proj",
27
+ "v_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67b3bac7b69aa76ae5be6d23c2d3edd35b199e34fddebd3c92c1bf6132837a5f
3
+ size 118568352
trainer_state.json ADDED
@@ -0,0 +1,910 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 17.77459749552773,
5
+ "eval_steps": 500,
6
+ "global_step": 1242,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.14311270125223613,
13
+ "grad_norm": 7.146514892578125,
14
+ "learning_rate": 0.00039677938808373593,
15
+ "loss": 3.5751,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.28622540250447226,
20
+ "grad_norm": 2.1325223445892334,
21
+ "learning_rate": 0.00039355877616747184,
22
+ "loss": 0.939,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.4293381037567084,
27
+ "grad_norm": 0.8520782589912415,
28
+ "learning_rate": 0.00039033816425120774,
29
+ "loss": 0.2653,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.5724508050089445,
34
+ "grad_norm": 0.7653748393058777,
35
+ "learning_rate": 0.00038711755233494365,
36
+ "loss": 0.1603,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.7155635062611807,
41
+ "grad_norm": 0.661469578742981,
42
+ "learning_rate": 0.00038389694041867956,
43
+ "loss": 0.1886,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.8586762075134168,
48
+ "grad_norm": 0.39610955119132996,
49
+ "learning_rate": 0.00038067632850241547,
50
+ "loss": 0.1859,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 1.0017889087656529,
55
+ "grad_norm": 0.4488755464553833,
56
+ "learning_rate": 0.0003774557165861514,
57
+ "loss": 0.1538,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 1.144901610017889,
62
+ "grad_norm": 0.2944377362728119,
63
+ "learning_rate": 0.00037423510466988734,
64
+ "loss": 0.1195,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 1.2880143112701252,
69
+ "grad_norm": 0.29124024510383606,
70
+ "learning_rate": 0.0003710144927536232,
71
+ "loss": 0.1271,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 1.4311270125223614,
76
+ "grad_norm": 0.42328736186027527,
77
+ "learning_rate": 0.0003677938808373591,
78
+ "loss": 0.1018,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 1.5742397137745976,
83
+ "grad_norm": 0.3259565234184265,
84
+ "learning_rate": 0.00036457326892109506,
85
+ "loss": 0.0848,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 1.7173524150268338,
90
+ "grad_norm": 0.479124516248703,
91
+ "learning_rate": 0.0003613526570048309,
92
+ "loss": 0.106,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 1.8604651162790697,
97
+ "grad_norm": 0.40788090229034424,
98
+ "learning_rate": 0.0003581320450885668,
99
+ "loss": 0.0969,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 2.0035778175313057,
104
+ "grad_norm": 0.3574964106082916,
105
+ "learning_rate": 0.0003549114331723028,
106
+ "loss": 0.124,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 2.146690518783542,
111
+ "grad_norm": 0.37805065512657166,
112
+ "learning_rate": 0.0003516908212560387,
113
+ "loss": 0.0491,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 2.289803220035778,
118
+ "grad_norm": 0.25937220454216003,
119
+ "learning_rate": 0.00034847020933977455,
120
+ "loss": 0.0669,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 2.4329159212880143,
125
+ "grad_norm": 0.34056201577186584,
126
+ "learning_rate": 0.00034524959742351046,
127
+ "loss": 0.0595,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 2.5760286225402504,
132
+ "grad_norm": 0.30211707949638367,
133
+ "learning_rate": 0.0003420289855072464,
134
+ "loss": 0.0648,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 2.7191413237924866,
139
+ "grad_norm": 0.18458786606788635,
140
+ "learning_rate": 0.0003388083735909823,
141
+ "loss": 0.0545,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 2.862254025044723,
146
+ "grad_norm": 0.27384912967681885,
147
+ "learning_rate": 0.0003355877616747182,
148
+ "loss": 0.0684,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 3.005366726296959,
153
+ "grad_norm": 0.16877304017543793,
154
+ "learning_rate": 0.00033236714975845414,
155
+ "loss": 0.0695,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 3.148479427549195,
160
+ "grad_norm": 0.07739146798849106,
161
+ "learning_rate": 0.00032914653784219005,
162
+ "loss": 0.0256,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 3.2915921288014314,
167
+ "grad_norm": 0.2832132577896118,
168
+ "learning_rate": 0.0003259259259259259,
169
+ "loss": 0.0263,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 3.434704830053667,
174
+ "grad_norm": 0.21412289142608643,
175
+ "learning_rate": 0.00032270531400966187,
176
+ "loss": 0.0287,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 3.5778175313059033,
181
+ "grad_norm": 0.1840696483850479,
182
+ "learning_rate": 0.0003194847020933978,
183
+ "loss": 0.0469,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 3.7209302325581395,
188
+ "grad_norm": 0.34246236085891724,
189
+ "learning_rate": 0.00031626409017713363,
190
+ "loss": 0.0243,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 3.8640429338103757,
195
+ "grad_norm": 0.056173525750637054,
196
+ "learning_rate": 0.0003130434782608696,
197
+ "loss": 0.0252,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 4.007155635062611,
202
+ "grad_norm": 0.09256428480148315,
203
+ "learning_rate": 0.0003098228663446055,
204
+ "loss": 0.0216,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 4.150268336314848,
209
+ "grad_norm": 0.20085078477859497,
210
+ "learning_rate": 0.0003066022544283414,
211
+ "loss": 0.0102,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 4.293381037567084,
216
+ "grad_norm": 0.021982286125421524,
217
+ "learning_rate": 0.0003033816425120773,
218
+ "loss": 0.0131,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 4.43649373881932,
223
+ "grad_norm": 0.054368916898965836,
224
+ "learning_rate": 0.0003001610305958132,
225
+ "loss": 0.0145,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 4.579606440071556,
230
+ "grad_norm": 0.0868581086397171,
231
+ "learning_rate": 0.00029694041867954913,
232
+ "loss": 0.0181,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 4.722719141323792,
237
+ "grad_norm": 0.24308475852012634,
238
+ "learning_rate": 0.00029371980676328504,
239
+ "loss": 0.0125,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 4.8658318425760285,
244
+ "grad_norm": 0.14394602179527283,
245
+ "learning_rate": 0.00029049919484702095,
246
+ "loss": 0.0149,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 5.008944543828265,
251
+ "grad_norm": 0.05040862783789635,
252
+ "learning_rate": 0.00028727858293075686,
253
+ "loss": 0.0096,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 5.152057245080501,
258
+ "grad_norm": 0.28047820925712585,
259
+ "learning_rate": 0.00028405797101449276,
260
+ "loss": 0.0032,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 5.295169946332737,
265
+ "grad_norm": 0.07502233237028122,
266
+ "learning_rate": 0.0002808373590982287,
267
+ "loss": 0.0038,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 5.438282647584973,
272
+ "grad_norm": 0.8537871837615967,
273
+ "learning_rate": 0.0002776167471819646,
274
+ "loss": 0.0073,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 5.5813953488372094,
279
+ "grad_norm": 0.005727715790271759,
280
+ "learning_rate": 0.0002743961352657005,
281
+ "loss": 0.0106,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 5.724508050089446,
286
+ "grad_norm": 0.04042937234044075,
287
+ "learning_rate": 0.0002711755233494364,
288
+ "loss": 0.0041,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 5.867620751341682,
293
+ "grad_norm": 0.11248348653316498,
294
+ "learning_rate": 0.0002679549114331723,
295
+ "loss": 0.003,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 6.010733452593918,
300
+ "grad_norm": 0.014976495876908302,
301
+ "learning_rate": 0.00026473429951690827,
302
+ "loss": 0.0067,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 6.153846153846154,
307
+ "grad_norm": 0.15070898830890656,
308
+ "learning_rate": 0.0002615136876006441,
309
+ "loss": 0.0035,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 6.29695885509839,
314
+ "grad_norm": 0.0066925715655088425,
315
+ "learning_rate": 0.00025829307568438003,
316
+ "loss": 0.0027,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 6.440071556350626,
321
+ "grad_norm": 0.015314973890781403,
322
+ "learning_rate": 0.00025507246376811594,
323
+ "loss": 0.0045,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 6.583184257602863,
328
+ "grad_norm": 0.030470581725239754,
329
+ "learning_rate": 0.00025185185185185185,
330
+ "loss": 0.0029,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 6.726296958855098,
335
+ "grad_norm": 0.0092542115598917,
336
+ "learning_rate": 0.00024863123993558775,
337
+ "loss": 0.0043,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 6.869409660107334,
342
+ "grad_norm": 0.016118695959448814,
343
+ "learning_rate": 0.00024541062801932366,
344
+ "loss": 0.0011,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 7.01252236135957,
349
+ "grad_norm": 0.01760493591427803,
350
+ "learning_rate": 0.0002421900161030596,
351
+ "loss": 0.004,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 7.155635062611807,
356
+ "grad_norm": 0.0077838534489274025,
357
+ "learning_rate": 0.0002389694041867955,
358
+ "loss": 0.0004,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 7.298747763864043,
363
+ "grad_norm": 0.006766254547983408,
364
+ "learning_rate": 0.00023574879227053139,
365
+ "loss": 0.0015,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 7.441860465116279,
370
+ "grad_norm": 0.009164445102214813,
371
+ "learning_rate": 0.00023252818035426732,
372
+ "loss": 0.0006,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 7.584973166368515,
377
+ "grad_norm": 0.002783432835713029,
378
+ "learning_rate": 0.00022930756843800323,
379
+ "loss": 0.0005,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 7.728085867620751,
384
+ "grad_norm": 0.15486985445022583,
385
+ "learning_rate": 0.0002260869565217391,
386
+ "loss": 0.0036,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 7.8711985688729875,
391
+ "grad_norm": 0.042650897055864334,
392
+ "learning_rate": 0.00022286634460547507,
393
+ "loss": 0.0006,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 8.014311270125223,
398
+ "grad_norm": 0.0018309111474081874,
399
+ "learning_rate": 0.00021964573268921095,
400
+ "loss": 0.0011,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 8.15742397137746,
405
+ "grad_norm": 0.005560223013162613,
406
+ "learning_rate": 0.00021642512077294686,
407
+ "loss": 0.001,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 8.300536672629695,
412
+ "grad_norm": 0.03727242350578308,
413
+ "learning_rate": 0.0002132045088566828,
414
+ "loss": 0.0015,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 8.443649373881932,
419
+ "grad_norm": 0.34321093559265137,
420
+ "learning_rate": 0.00020998389694041868,
421
+ "loss": 0.0031,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 8.586762075134168,
426
+ "grad_norm": 0.020942572504281998,
427
+ "learning_rate": 0.00020676328502415459,
428
+ "loss": 0.0022,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 8.729874776386405,
433
+ "grad_norm": 0.010578208602964878,
434
+ "learning_rate": 0.00020354267310789052,
435
+ "loss": 0.0006,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 8.87298747763864,
440
+ "grad_norm": 0.004323468543589115,
441
+ "learning_rate": 0.00020032206119162643,
442
+ "loss": 0.0005,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 9.016100178890877,
447
+ "grad_norm": 0.1614646017551422,
448
+ "learning_rate": 0.00019710144927536234,
449
+ "loss": 0.0011,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 9.159212880143112,
454
+ "grad_norm": 0.0012326347641646862,
455
+ "learning_rate": 0.00019388083735909825,
456
+ "loss": 0.0005,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 9.30232558139535,
461
+ "grad_norm": 0.006543063558638096,
462
+ "learning_rate": 0.00019066022544283415,
463
+ "loss": 0.0002,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 9.445438282647585,
468
+ "grad_norm": 0.21280421316623688,
469
+ "learning_rate": 0.00018743961352657006,
470
+ "loss": 0.0003,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 9.588550983899822,
475
+ "grad_norm": 0.006327577400952578,
476
+ "learning_rate": 0.00018421900161030597,
477
+ "loss": 0.0002,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 9.731663685152057,
482
+ "grad_norm": 0.0025285291485488415,
483
+ "learning_rate": 0.00018099838969404188,
484
+ "loss": 0.0001,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 9.874776386404294,
489
+ "grad_norm": 0.0014309959951788187,
490
+ "learning_rate": 0.00017777777777777779,
491
+ "loss": 0.0001,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 10.01788908765653,
496
+ "grad_norm": 0.0024150668177753687,
497
+ "learning_rate": 0.0001745571658615137,
498
+ "loss": 0.0001,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 10.161001788908766,
503
+ "grad_norm": 0.0025761763099581003,
504
+ "learning_rate": 0.0001713365539452496,
505
+ "loss": 0.0001,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 10.304114490161002,
510
+ "grad_norm": 0.0017020882805809379,
511
+ "learning_rate": 0.0001681159420289855,
512
+ "loss": 0.0001,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 10.447227191413237,
517
+ "grad_norm": 0.0028596080373972654,
518
+ "learning_rate": 0.00016489533011272142,
519
+ "loss": 0.0001,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 10.590339892665474,
524
+ "grad_norm": 0.0019378801807761192,
525
+ "learning_rate": 0.00016167471819645735,
526
+ "loss": 0.0001,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 10.73345259391771,
531
+ "grad_norm": 0.001211544731631875,
532
+ "learning_rate": 0.00015845410628019323,
533
+ "loss": 0.0001,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 10.876565295169947,
538
+ "grad_norm": 0.0033484594896435738,
539
+ "learning_rate": 0.00015523349436392914,
540
+ "loss": 0.0001,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 11.019677996422182,
545
+ "grad_norm": 0.001493943389505148,
546
+ "learning_rate": 0.00015201288244766508,
547
+ "loss": 0.0001,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 11.162790697674419,
552
+ "grad_norm": 0.0019909776747226715,
553
+ "learning_rate": 0.00014879227053140096,
554
+ "loss": 0.0001,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 11.305903398926654,
559
+ "grad_norm": 0.0011982638388872147,
560
+ "learning_rate": 0.0001455716586151369,
561
+ "loss": 0.0001,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 11.449016100178891,
566
+ "grad_norm": 0.0015958467265591025,
567
+ "learning_rate": 0.0001423510466988728,
568
+ "loss": 0.0001,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 11.592128801431127,
573
+ "grad_norm": 0.0008461058023385704,
574
+ "learning_rate": 0.0001391304347826087,
575
+ "loss": 0.0001,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 11.735241502683364,
580
+ "grad_norm": 0.0005576548865064979,
581
+ "learning_rate": 0.00013590982286634462,
582
+ "loss": 0.0001,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 11.878354203935599,
587
+ "grad_norm": 0.0017713948618620634,
588
+ "learning_rate": 0.0001326892109500805,
589
+ "loss": 0.0001,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 12.021466905187836,
594
+ "grad_norm": 0.001206880551762879,
595
+ "learning_rate": 0.00012946859903381643,
596
+ "loss": 0.0001,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 12.164579606440071,
601
+ "grad_norm": 0.0013083606027066708,
602
+ "learning_rate": 0.00012624798711755234,
603
+ "loss": 0.0001,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 12.307692307692308,
608
+ "grad_norm": 0.0008201482123695314,
609
+ "learning_rate": 0.00012302737520128825,
610
+ "loss": 0.0001,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 12.450805008944544,
615
+ "grad_norm": 0.0006802495336160064,
616
+ "learning_rate": 0.00011980676328502416,
617
+ "loss": 0.0001,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 12.59391771019678,
622
+ "grad_norm": 0.0017911783652380109,
623
+ "learning_rate": 0.00011658615136876008,
624
+ "loss": 0.0001,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 12.737030411449016,
629
+ "grad_norm": 0.0007388959056697786,
630
+ "learning_rate": 0.00011336553945249598,
631
+ "loss": 0.0,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 12.880143112701251,
636
+ "grad_norm": 0.0007727427291683853,
637
+ "learning_rate": 0.00011014492753623188,
638
+ "loss": 0.0001,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 13.023255813953488,
643
+ "grad_norm": 0.0008818788919597864,
644
+ "learning_rate": 0.0001069243156199678,
645
+ "loss": 0.0001,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 13.166368515205724,
650
+ "grad_norm": 0.0005572364898398519,
651
+ "learning_rate": 0.0001037037037037037,
652
+ "loss": 0.0,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 13.30948121645796,
657
+ "grad_norm": 0.0009758470696397126,
658
+ "learning_rate": 0.00010048309178743962,
659
+ "loss": 0.0001,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 13.452593917710196,
664
+ "grad_norm": 0.0003166435344610363,
665
+ "learning_rate": 9.726247987117553e-05,
666
+ "loss": 0.0001,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 13.595706618962433,
671
+ "grad_norm": 0.0005005749990232289,
672
+ "learning_rate": 9.404186795491144e-05,
673
+ "loss": 0.0,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 13.738819320214668,
678
+ "grad_norm": 0.0003304154670331627,
679
+ "learning_rate": 9.082125603864735e-05,
680
+ "loss": 0.0001,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 13.881932021466906,
685
+ "grad_norm": 0.0005377003108151257,
686
+ "learning_rate": 8.760064412238325e-05,
687
+ "loss": 0.0001,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 14.02504472271914,
692
+ "grad_norm": 0.0015913191018626094,
693
+ "learning_rate": 8.438003220611916e-05,
694
+ "loss": 0.0001,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 14.168157423971378,
699
+ "grad_norm": 0.000676720985211432,
700
+ "learning_rate": 8.115942028985508e-05,
701
+ "loss": 0.0001,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 14.311270125223613,
706
+ "grad_norm": 0.0007494900492019951,
707
+ "learning_rate": 7.793880837359099e-05,
708
+ "loss": 0.0001,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 14.45438282647585,
713
+ "grad_norm": 0.0015422647120431066,
714
+ "learning_rate": 7.47181964573269e-05,
715
+ "loss": 0.0,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 14.597495527728086,
720
+ "grad_norm": 0.0005012313486076891,
721
+ "learning_rate": 7.14975845410628e-05,
722
+ "loss": 0.0,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 14.740608228980323,
727
+ "grad_norm": 0.0008338551269844174,
728
+ "learning_rate": 6.827697262479872e-05,
729
+ "loss": 0.0,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 14.883720930232558,
734
+ "grad_norm": 0.0006810138584114611,
735
+ "learning_rate": 6.505636070853462e-05,
736
+ "loss": 0.0001,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 15.026833631484795,
741
+ "grad_norm": 0.00043299293611198664,
742
+ "learning_rate": 6.183574879227053e-05,
743
+ "loss": 0.0,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 15.16994633273703,
748
+ "grad_norm": 0.0005277034360915422,
749
+ "learning_rate": 5.861513687600645e-05,
750
+ "loss": 0.0,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 15.313059033989267,
755
+ "grad_norm": 0.0006858156993985176,
756
+ "learning_rate": 5.5394524959742355e-05,
757
+ "loss": 0.0001,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 15.456171735241503,
762
+ "grad_norm": 0.0008438636432401836,
763
+ "learning_rate": 5.217391304347826e-05,
764
+ "loss": 0.0,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 15.59928443649374,
769
+ "grad_norm": 0.0012173138093203306,
770
+ "learning_rate": 4.895330112721417e-05,
771
+ "loss": 0.0001,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 15.742397137745975,
776
+ "grad_norm": 0.002290137577801943,
777
+ "learning_rate": 4.573268921095008e-05,
778
+ "loss": 0.0,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 15.88550983899821,
783
+ "grad_norm": 0.0005496228695847094,
784
+ "learning_rate": 4.2512077294685994e-05,
785
+ "loss": 0.0,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 16.028622540250446,
790
+ "grad_norm": 0.0018827420426532626,
791
+ "learning_rate": 3.92914653784219e-05,
792
+ "loss": 0.0,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 16.171735241502684,
797
+ "grad_norm": 0.00045006562140770257,
798
+ "learning_rate": 3.607085346215781e-05,
799
+ "loss": 0.0001,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 16.31484794275492,
804
+ "grad_norm": 0.0005126325413584709,
805
+ "learning_rate": 3.2850241545893725e-05,
806
+ "loss": 0.0,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 16.457960644007155,
811
+ "grad_norm": 0.00035093360929749906,
812
+ "learning_rate": 2.962962962962963e-05,
813
+ "loss": 0.0,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 16.60107334525939,
818
+ "grad_norm": 0.0010109692811965942,
819
+ "learning_rate": 2.640901771336554e-05,
820
+ "loss": 0.0001,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 16.74418604651163,
825
+ "grad_norm": 0.0006910230731591582,
826
+ "learning_rate": 2.318840579710145e-05,
827
+ "loss": 0.0,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 16.887298747763865,
832
+ "grad_norm": 0.0004351095121819526,
833
+ "learning_rate": 1.996779388083736e-05,
834
+ "loss": 0.0,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 17.0304114490161,
839
+ "grad_norm": 0.0006468660430982709,
840
+ "learning_rate": 1.674718196457327e-05,
841
+ "loss": 0.0,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 17.173524150268335,
846
+ "grad_norm": 0.0002576902334112674,
847
+ "learning_rate": 1.3526570048309179e-05,
848
+ "loss": 0.0,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 17.316636851520574,
853
+ "grad_norm": 0.0010522498050704598,
854
+ "learning_rate": 1.0305958132045089e-05,
855
+ "loss": 0.0,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 17.45974955277281,
860
+ "grad_norm": 0.0007789513911120594,
861
+ "learning_rate": 7.0853462157809985e-06,
862
+ "loss": 0.0001,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 17.602862254025045,
867
+ "grad_norm": 0.0009570368565618992,
868
+ "learning_rate": 3.864734299516908e-06,
869
+ "loss": 0.0,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 17.74597495527728,
874
+ "grad_norm": 0.0009920781012624502,
875
+ "learning_rate": 6.44122383252818e-07,
876
+ "loss": 0.0,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 17.77459749552773,
881
+ "step": 1242,
882
+ "total_flos": 6.807580263736934e+16,
883
+ "train_loss": 0.056659956144777014,
884
+ "train_runtime": 9770.217,
885
+ "train_samples_per_second": 6.177,
886
+ "train_steps_per_second": 0.127
887
+ }
888
+ ],
889
+ "logging_steps": 10,
890
+ "max_steps": 1242,
891
+ "num_input_tokens_seen": 0,
892
+ "num_train_epochs": 18,
893
+ "save_steps": 500,
894
+ "stateful_callbacks": {
895
+ "TrainerControl": {
896
+ "args": {
897
+ "should_epoch_stop": false,
898
+ "should_evaluate": false,
899
+ "should_log": false,
900
+ "should_save": true,
901
+ "should_training_stop": true
902
+ },
903
+ "attributes": {}
904
+ }
905
+ },
906
+ "total_flos": 6.807580263736934e+16,
907
+ "train_batch_size": 6,
908
+ "trial_name": null,
909
+ "trial_params": null
910
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecb5c4e77493d6b6fd2ca53e6f13eaecbb140ab06a0f0c44421186f01576fb69
3
+ size 6776