--- pipeline_tag: text-generation inference: false license: apache-2.0 model-index: - name: ibm/PowerMoE-3b results: - task: type: text-generation dataset: type: lm-eval-harness name: ARC metrics: - name: accuracy-norm type: accuracy-norm value: 58.1 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: BoolQ metrics: - name: accuracy type: accuracy value: 65 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: Hellaswag metrics: - name: accuracy-norm type: accuracy-norm value: 71.5 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: OpenBookQA metrics: - name: accuracy-norm type: accuracy-norm value: 41 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: PIQA metrics: - name: accuracy-norm type: accuracy-norm value: 79.1 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: Winogrande metrics: - name: accuracy-norm type: accuracy-norm value: 65 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: MMLU (5 shot) metrics: - name: accuracy type: accuracy value: 42.8 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: GSM8k (5 shot) metrics: - name: accuracy type: accuracy value: 25.9 verified: false - task: type: text-generation dataset: type: lm-eval-harness name: math (4 shot) metrics: - name: accuracy type: accuracy value: 14.8 verified: false - task: type: text-generation dataset: type: bigcode-eval name: humaneval metrics: - name: pass@1 type: pass@1 value: 20.1 verified: false - task: type: text-generation dataset: type: bigcode-eval name: MBPP metrics: - name: pass@1 type: pass@1 value: 32.4 verified: false base_model: - ibm/PowerMoE-3b --- ## Model Summary PowerMoE-3B is a 3B sparse Mixture-of-Experts (sMoE) language model trained with the Power learning rate scheduler. It sparsely activates 800M parameters for each token. It is trained on a mix of open-source and proprietary datasets. PowerMoE-3B has shown promising results compared to other dense models with 2x activate parameters across various benchmarks, including natural language multi-choices, code generation, and math reasoning. Paper: https://arxiv.org/abs/2408.13359 This is a GGUF quantized version. ## Usage Requires latest llama.cpp to run. ### Generation This is a simple example of how to use the PowerMoe GGUF: ./llama-cli -m PowerMoE4x800M_q3km.gguf -p "How about a snack?"