Md Mushfiqur Rahman commited on
Commit
560f5a7
1 Parent(s): 19dbc29

Upload with huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - canine
5
+ - pretrained-on-english-language
6
+ ---
7
+
8
+ ### How to use
9
+
10
+ Here is how to use this model:
11
+
12
+ ```python
13
+ from transformers import CanineModel
14
+ model = CanineModel.from_pretrained('mushfiqur11/<repo name>')
15
+ ```
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 74.29,
3
+ "eval_accuracy_score": 0.9790609137055838,
4
+ "eval_f1": 0.8868703550784476,
5
+ "eval_loss": 0.14278778433799744,
6
+ "eval_precision": 0.8788870703764321,
7
+ "eval_recall": 0.895,
8
+ "eval_runtime": 4.4475,
9
+ "eval_samples": 320,
10
+ "eval_samples_per_second": 71.951,
11
+ "eval_steps_per_second": 8.994,
12
+ "test_accuracy_score": 0.9701858442071966,
13
+ "test_f1": 0.8364700961940611,
14
+ "test_loss": 0.2297782301902771,
15
+ "test_precision": 0.8250825082508251,
16
+ "test_recall": 0.8481764206955047,
17
+ "test_runtime": 8.8463,
18
+ "test_samples": 638,
19
+ "test_samples_per_second": 72.12,
20
+ "test_steps_per_second": 9.043,
21
+ "train_loss": 0.01710937021443477,
22
+ "train_runtime": 8154.5313,
23
+ "train_samples": 2235,
24
+ "train_samples_per_second": 58.863,
25
+ "train_steps_per_second": 1.839
26
+ }
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-DATE",
15
+ "2": "I-DATE",
16
+ "3": "B-PER",
17
+ "4": "I-PER",
18
+ "5": "B-ORG",
19
+ "6": "I-ORG",
20
+ "7": "B-LOC",
21
+ "8": "I-LOC"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "B-DATE": 1,
27
+ "B-LOC": 7,
28
+ "B-ORG": 5,
29
+ "B-PER": 3,
30
+ "I-DATE": 2,
31
+ "I-LOC": 8,
32
+ "I-ORG": 6,
33
+ "I-PER": 4,
34
+ "O": 0
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "max_position_embeddings": 512,
38
+ "model_type": "bert",
39
+ "num_attention_heads": 12,
40
+ "num_hidden_layers": 12,
41
+ "pad_token_id": 0,
42
+ "pooler_fc_size": 768,
43
+ "pooler_num_attention_heads": 12,
44
+ "pooler_num_fc_layers": 3,
45
+ "pooler_size_per_head": 128,
46
+ "pooler_type": "first_token_transform",
47
+ "position_embedding_type": "absolute",
48
+ "torch_dtype": "float32",
49
+ "transformers_version": "4.17.0",
50
+ "type_vocab_size": 2,
51
+ "use_cache": true,
52
+ "vocab_size": 119547
53
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dc1314ac689ae3e31e105ab6c619d587e3f763b799509f449cbabb4bece2153
3
+ size 709165101
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
test_predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "add_prefix_space": false, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-multilingual-cased", "tokenizer_class": "BertTokenizer"}
trainer_state.json ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8868703550784476,
3
+ "best_model_checkpoint": "/scratch/mrahma45/pixel/finetuned_models/mbert/mbert-base-finetuned-masakhaner-ibo/checkpoint-3000",
4
+ "epoch": 74.28571428571429,
5
+ "global_step": 5200,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 2.86,
12
+ "eval_accuracy_score": 0.9765228426395939,
13
+ "eval_f1": 0.8673300165837479,
14
+ "eval_loss": 0.08876766264438629,
15
+ "eval_precision": 0.863036303630363,
16
+ "eval_recall": 0.8716666666666667,
17
+ "eval_runtime": 4.4473,
18
+ "eval_samples_per_second": 71.954,
19
+ "eval_steps_per_second": 8.994,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 5.71,
24
+ "eval_accuracy_score": 0.9741434010152284,
25
+ "eval_f1": 0.8617886178861788,
26
+ "eval_loss": 0.11480691283941269,
27
+ "eval_precision": 0.8412698412698413,
28
+ "eval_recall": 0.8833333333333333,
29
+ "eval_runtime": 4.4462,
30
+ "eval_samples_per_second": 71.972,
31
+ "eval_steps_per_second": 8.997,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 7.14,
36
+ "learning_rate": 4.865771812080537e-05,
37
+ "loss": 0.1451,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 8.57,
42
+ "eval_accuracy_score": 0.9781091370558376,
43
+ "eval_f1": 0.874074074074074,
44
+ "eval_loss": 0.10442519187927246,
45
+ "eval_precision": 0.8634146341463415,
46
+ "eval_recall": 0.885,
47
+ "eval_runtime": 4.449,
48
+ "eval_samples_per_second": 71.926,
49
+ "eval_steps_per_second": 8.991,
50
+ "step": 600
51
+ },
52
+ {
53
+ "epoch": 11.43,
54
+ "eval_accuracy_score": 0.9766814720812182,
55
+ "eval_f1": 0.8705688375927452,
56
+ "eval_loss": 0.11804218590259552,
57
+ "eval_precision": 0.8613376835236541,
58
+ "eval_recall": 0.88,
59
+ "eval_runtime": 4.4511,
60
+ "eval_samples_per_second": 71.893,
61
+ "eval_steps_per_second": 8.987,
62
+ "step": 800
63
+ },
64
+ {
65
+ "epoch": 14.29,
66
+ "learning_rate": 4.697986577181208e-05,
67
+ "loss": 0.0084,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 14.29,
72
+ "eval_accuracy_score": 0.9746192893401016,
73
+ "eval_f1": 0.8457047539616346,
74
+ "eval_loss": 0.1311611831188202,
75
+ "eval_precision": 0.8464106844741235,
76
+ "eval_recall": 0.845,
77
+ "eval_runtime": 4.4345,
78
+ "eval_samples_per_second": 72.162,
79
+ "eval_steps_per_second": 9.02,
80
+ "step": 1000
81
+ },
82
+ {
83
+ "epoch": 17.14,
84
+ "eval_accuracy_score": 0.9763642131979695,
85
+ "eval_f1": 0.8714168714168715,
86
+ "eval_loss": 0.134602889418602,
87
+ "eval_precision": 0.856682769726248,
88
+ "eval_recall": 0.8866666666666667,
89
+ "eval_runtime": 4.4493,
90
+ "eval_samples_per_second": 71.921,
91
+ "eval_steps_per_second": 8.99,
92
+ "step": 1200
93
+ },
94
+ {
95
+ "epoch": 20.0,
96
+ "eval_accuracy_score": 0.9803299492385786,
97
+ "eval_f1": 0.8872180451127819,
98
+ "eval_loss": 0.1307426393032074,
99
+ "eval_precision": 0.8894472361809045,
100
+ "eval_recall": 0.885,
101
+ "eval_runtime": 4.442,
102
+ "eval_samples_per_second": 72.039,
103
+ "eval_steps_per_second": 9.005,
104
+ "step": 1400
105
+ },
106
+ {
107
+ "epoch": 21.43,
108
+ "learning_rate": 4.530201342281879e-05,
109
+ "loss": 0.005,
110
+ "step": 1500
111
+ },
112
+ {
113
+ "epoch": 22.86,
114
+ "eval_accuracy_score": 0.9771573604060914,
115
+ "eval_f1": 0.8767576509511993,
116
+ "eval_loss": 0.14564308524131775,
117
+ "eval_precision": 0.8702791461412152,
118
+ "eval_recall": 0.8833333333333333,
119
+ "eval_runtime": 4.4473,
120
+ "eval_samples_per_second": 71.954,
121
+ "eval_steps_per_second": 8.994,
122
+ "step": 1600
123
+ },
124
+ {
125
+ "epoch": 25.71,
126
+ "eval_accuracy_score": 0.9771573604060914,
127
+ "eval_f1": 0.8782104391052196,
128
+ "eval_loss": 0.13427743315696716,
129
+ "eval_precision": 0.8731466227347611,
130
+ "eval_recall": 0.8833333333333333,
131
+ "eval_runtime": 4.443,
132
+ "eval_samples_per_second": 72.023,
133
+ "eval_steps_per_second": 9.003,
134
+ "step": 1800
135
+ },
136
+ {
137
+ "epoch": 28.57,
138
+ "learning_rate": 4.36241610738255e-05,
139
+ "loss": 0.0039,
140
+ "step": 2000
141
+ },
142
+ {
143
+ "epoch": 28.57,
144
+ "eval_accuracy_score": 0.9762055837563451,
145
+ "eval_f1": 0.8687707641196013,
146
+ "eval_loss": 0.15129442512989044,
147
+ "eval_precision": 0.8658940397350994,
148
+ "eval_recall": 0.8716666666666667,
149
+ "eval_runtime": 4.4359,
150
+ "eval_samples_per_second": 72.139,
151
+ "eval_steps_per_second": 9.017,
152
+ "step": 2000
153
+ },
154
+ {
155
+ "epoch": 31.43,
156
+ "eval_accuracy_score": 0.9750951776649747,
157
+ "eval_f1": 0.8700754400670577,
158
+ "eval_loss": 0.16774575412273407,
159
+ "eval_precision": 0.8752107925801011,
160
+ "eval_recall": 0.865,
161
+ "eval_runtime": 4.4409,
162
+ "eval_samples_per_second": 72.057,
163
+ "eval_steps_per_second": 9.007,
164
+ "step": 2200
165
+ },
166
+ {
167
+ "epoch": 34.29,
168
+ "eval_accuracy_score": 0.9749365482233503,
169
+ "eval_f1": 0.8601973684210527,
170
+ "eval_loss": 0.1633668839931488,
171
+ "eval_precision": 0.849025974025974,
172
+ "eval_recall": 0.8716666666666667,
173
+ "eval_runtime": 4.4452,
174
+ "eval_samples_per_second": 71.988,
175
+ "eval_steps_per_second": 8.998,
176
+ "step": 2400
177
+ },
178
+ {
179
+ "epoch": 35.71,
180
+ "learning_rate": 4.194630872483222e-05,
181
+ "loss": 0.0036,
182
+ "step": 2500
183
+ },
184
+ {
185
+ "epoch": 37.14,
186
+ "eval_accuracy_score": 0.9766814720812182,
187
+ "eval_f1": 0.8782104391052196,
188
+ "eval_loss": 0.16212213039398193,
189
+ "eval_precision": 0.8731466227347611,
190
+ "eval_recall": 0.8833333333333333,
191
+ "eval_runtime": 4.4427,
192
+ "eval_samples_per_second": 72.028,
193
+ "eval_steps_per_second": 9.004,
194
+ "step": 2600
195
+ },
196
+ {
197
+ "epoch": 40.0,
198
+ "eval_accuracy_score": 0.9763642131979695,
199
+ "eval_f1": 0.8719665271966527,
200
+ "eval_loss": 0.16754868626594543,
201
+ "eval_precision": 0.8756302521008403,
202
+ "eval_recall": 0.8683333333333333,
203
+ "eval_runtime": 4.4401,
204
+ "eval_samples_per_second": 72.07,
205
+ "eval_steps_per_second": 9.009,
206
+ "step": 2800
207
+ },
208
+ {
209
+ "epoch": 42.86,
210
+ "learning_rate": 4.026845637583892e-05,
211
+ "loss": 0.0023,
212
+ "step": 3000
213
+ },
214
+ {
215
+ "epoch": 42.86,
216
+ "eval_accuracy_score": 0.9790609137055838,
217
+ "eval_f1": 0.8868703550784476,
218
+ "eval_loss": 0.14278778433799744,
219
+ "eval_precision": 0.8788870703764321,
220
+ "eval_recall": 0.895,
221
+ "eval_runtime": 4.4323,
222
+ "eval_samples_per_second": 72.197,
223
+ "eval_steps_per_second": 9.025,
224
+ "step": 3000
225
+ },
226
+ {
227
+ "epoch": 45.71,
228
+ "eval_accuracy_score": 0.9782677664974619,
229
+ "eval_f1": 0.8855721393034827,
230
+ "eval_loss": 0.14296667277812958,
231
+ "eval_precision": 0.8811881188118812,
232
+ "eval_recall": 0.89,
233
+ "eval_runtime": 4.4374,
234
+ "eval_samples_per_second": 72.114,
235
+ "eval_steps_per_second": 9.014,
236
+ "step": 3200
237
+ },
238
+ {
239
+ "epoch": 48.57,
240
+ "eval_accuracy_score": 0.9781091370558376,
241
+ "eval_f1": 0.8870703764320785,
242
+ "eval_loss": 0.14033867418766022,
243
+ "eval_precision": 0.8713826366559485,
244
+ "eval_recall": 0.9033333333333333,
245
+ "eval_runtime": 4.4359,
246
+ "eval_samples_per_second": 72.138,
247
+ "eval_steps_per_second": 9.017,
248
+ "step": 3400
249
+ },
250
+ {
251
+ "epoch": 50.0,
252
+ "learning_rate": 3.859060402684564e-05,
253
+ "loss": 0.0026,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 51.43,
258
+ "eval_accuracy_score": 0.9749365482233503,
259
+ "eval_f1": 0.8693467336683417,
260
+ "eval_loss": 0.18670859932899475,
261
+ "eval_precision": 0.8737373737373737,
262
+ "eval_recall": 0.865,
263
+ "eval_runtime": 4.4362,
264
+ "eval_samples_per_second": 72.133,
265
+ "eval_steps_per_second": 9.017,
266
+ "step": 3600
267
+ },
268
+ {
269
+ "epoch": 54.29,
270
+ "eval_accuracy_score": 0.9803299492385786,
271
+ "eval_f1": 0.8937908496732027,
272
+ "eval_loss": 0.1545487940311432,
273
+ "eval_precision": 0.8766025641025641,
274
+ "eval_recall": 0.9116666666666666,
275
+ "eval_runtime": 4.4428,
276
+ "eval_samples_per_second": 72.027,
277
+ "eval_steps_per_second": 9.003,
278
+ "step": 3800
279
+ },
280
+ {
281
+ "epoch": 57.14,
282
+ "learning_rate": 3.6912751677852356e-05,
283
+ "loss": 0.0021,
284
+ "step": 4000
285
+ },
286
+ {
287
+ "epoch": 57.14,
288
+ "eval_accuracy_score": 0.975253807106599,
289
+ "eval_f1": 0.8647302904564315,
290
+ "eval_loss": 0.1578870564699173,
291
+ "eval_precision": 0.8611570247933884,
292
+ "eval_recall": 0.8683333333333333,
293
+ "eval_runtime": 4.4357,
294
+ "eval_samples_per_second": 72.143,
295
+ "eval_steps_per_second": 9.018,
296
+ "step": 4000
297
+ },
298
+ {
299
+ "epoch": 60.0,
300
+ "eval_accuracy_score": 0.9792195431472082,
301
+ "eval_f1": 0.8872305140961857,
302
+ "eval_loss": 0.14871039986610413,
303
+ "eval_precision": 0.8828382838283828,
304
+ "eval_recall": 0.8916666666666667,
305
+ "eval_runtime": 4.4317,
306
+ "eval_samples_per_second": 72.207,
307
+ "eval_steps_per_second": 9.026,
308
+ "step": 4200
309
+ },
310
+ {
311
+ "epoch": 62.86,
312
+ "eval_accuracy_score": 0.9758883248730964,
313
+ "eval_f1": 0.865546218487395,
314
+ "eval_loss": 0.16632404923439026,
315
+ "eval_precision": 0.8728813559322034,
316
+ "eval_recall": 0.8583333333333333,
317
+ "eval_runtime": 4.4414,
318
+ "eval_samples_per_second": 72.05,
319
+ "eval_steps_per_second": 9.006,
320
+ "step": 4400
321
+ },
322
+ {
323
+ "epoch": 64.29,
324
+ "learning_rate": 3.523489932885906e-05,
325
+ "loss": 0.0026,
326
+ "step": 4500
327
+ },
328
+ {
329
+ "epoch": 65.71,
330
+ "eval_accuracy_score": 0.9747779187817259,
331
+ "eval_f1": 0.865721434528774,
332
+ "eval_loss": 0.15900883078575134,
333
+ "eval_precision": 0.8664440734557596,
334
+ "eval_recall": 0.865,
335
+ "eval_runtime": 4.441,
336
+ "eval_samples_per_second": 72.055,
337
+ "eval_steps_per_second": 9.007,
338
+ "step": 4600
339
+ },
340
+ {
341
+ "epoch": 68.57,
342
+ "eval_accuracy_score": 0.9789022842639594,
343
+ "eval_f1": 0.8827470686767169,
344
+ "eval_loss": 0.16089987754821777,
345
+ "eval_precision": 0.8872053872053872,
346
+ "eval_recall": 0.8783333333333333,
347
+ "eval_runtime": 4.4442,
348
+ "eval_samples_per_second": 72.004,
349
+ "eval_steps_per_second": 9.001,
350
+ "step": 4800
351
+ },
352
+ {
353
+ "epoch": 71.43,
354
+ "learning_rate": 3.3557046979865775e-05,
355
+ "loss": 0.0017,
356
+ "step": 5000
357
+ },
358
+ {
359
+ "epoch": 71.43,
360
+ "eval_accuracy_score": 0.9750951776649747,
361
+ "eval_f1": 0.8611339359079703,
362
+ "eval_loss": 0.1948554664850235,
363
+ "eval_precision": 0.8492706645056726,
364
+ "eval_recall": 0.8733333333333333,
365
+ "eval_runtime": 12.3435,
366
+ "eval_samples_per_second": 25.925,
367
+ "eval_steps_per_second": 3.241,
368
+ "step": 5000
369
+ },
370
+ {
371
+ "epoch": 74.29,
372
+ "eval_accuracy_score": 0.9777918781725888,
373
+ "eval_f1": 0.886158886158886,
374
+ "eval_loss": 0.15537256002426147,
375
+ "eval_precision": 0.8711755233494364,
376
+ "eval_recall": 0.9016666666666666,
377
+ "eval_runtime": 4.4385,
378
+ "eval_samples_per_second": 72.096,
379
+ "eval_steps_per_second": 9.012,
380
+ "step": 5200
381
+ },
382
+ {
383
+ "epoch": 74.29,
384
+ "step": 5200,
385
+ "total_flos": 2.169292304429568e+16,
386
+ "train_loss": 0.01710937021443477,
387
+ "train_runtime": 8154.5313,
388
+ "train_samples_per_second": 58.863,
389
+ "train_steps_per_second": 1.839
390
+ }
391
+ ],
392
+ "max_steps": 15000,
393
+ "num_train_epochs": 215,
394
+ "total_flos": 2.169292304429568e+16,
395
+ "trial_name": null,
396
+ "trial_params": null
397
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d581ce018ce8735151aa6240b9420cd5144ecf76e88ae256f5c03662ddfc8efe
3
+ size 3259
vocab.txt ADDED
The diff for this file is too large to render. See raw diff