--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: extractive_reader_nq_squad_v2 results: [] language: - en --- # extractive_reader_nq_squad_v2 This model is a fine-tuned version of [ToluClassics/extractive_reader_nq](https://huggingface.co/ToluClassics/extractive_reader_nq) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2 ### Code Examples ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("ToluClassics/extractive_reader_nq_squad_v2") model = AutoModelForQuestionAnswering.from_pretrained("ToluClassics/extractive_reader_nq_squad_v2") question = "" context = "" inputs = tokenizer.encode(question, context, add_special_tokens=True, return_tensors="pt") output = model(inputs) answer_start = torch.argmax(output.start_logits) answer_end = torch.argmax(output.end_logits) if answer_end >= answer_start: print(tokenizer.decode(inputs[0][answer_start:answer_end+1])) ```