File size: 6,290 Bytes
63f1a8f
 
 
 
 
5a0bd26
92ac48c
 
523a819
92ac48c
 
63f1a8f
92ac48c
 
 
523a819
92ac48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f1a8f
92ac48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523a819
 
92ac48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f36060
 
 
63f1a8f
3f36060
 
 
 
92ac48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f1a8f
92ac48c
661ebc2
92ac48c
0526e94
5a0bd26
 
92ac48c
5a0bd26
 
 
 
 
 
 
 
 
 
 
 
92ac48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f1a8f
 
 
 
 
 
 
 
 
 
 
 
 
92ac48c
 
 
5a0bd26
92ac48c
 
63f1a8f
 
 
 
 
 
 
 
 
 
 
 
92ac48c
 
5a0bd26
92ac48c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Deep learning
import tensorflow as tf 

# Methods for loading the weights into the model
import os 
import inspect


_CAP = 3501 # Cap for the number of notes

class Encoder_Z(tf.keras.layers.Layer):
  # Encoder part of the VAE

  def __init__(self, dim_z, name="encoder", **kwargs):
    super(Encoder_Z, self).__init__(name=name, **kwargs)
    self.dim_x = (3, _CAP, 1)
    self.dim_z = dim_z

  def build(self):
    layers = [tf.keras.layers.InputLayer(input_shape=self.dim_x)]

    layers.append(tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=(2, 2)))
    layers.append(tf.keras.layers.ReLU())
    layers.append(tf.keras.layers.Flatten())

    layers.append(tf.keras.layers.Dense(2000))
    layers.append(tf.keras.layers.ReLU())

    layers.append(tf.keras.layers.Dense(500))
    layers.append(tf.keras.layers.ReLU())

    layers.append(tf.keras.layers.Dense(self.dim_z * 2, activation=None, name="dist_params"))

    return tf.keras.Sequential(layers)


class Decoder_X(tf.keras.layers.Layer):
  # Decoder part of the VAE.

  def __init__(self, dim_z, name="decoder", **kwargs):
    super(Decoder_X, self).__init__(name=name, **kwargs)
    self.dim_z = dim_z

  def build(self):
    # Build architecture
      
    layers = [tf.keras.layers.InputLayer(input_shape=(self.dim_z,))]

    layers.append(tf.keras.layers.Dense(500))
    layers.append(tf.keras.layers.ReLU())

    layers.append(tf.keras.layers.Dense(2000))
    layers.append(tf.keras.layers.ReLU())

    layers.append(tf.keras.layers.Dense((_CAP - 1) / 2 * 32, activation=None))
    layers.append(tf.keras.layers.Reshape((1, int((_CAP - 1) / 2), 32)))

    layers.append(tf.keras.layers.Conv2DTranspose(
        filters=64, kernel_size=3, strides=2, padding='valid'))
    layers.append(tf.keras.layers.ReLU())

    layers.append(tf.keras.layers.Conv2DTranspose(
        filters=1, kernel_size=3, strides=1, padding='same'))

    return tf.keras.Sequential(layers)

kl_weight = tf.keras.backend.variable(0.125)



class VAECost:
  """
  VAE cost with a schedule based on the Microsoft Research Blog's article
  "Less pain, more gain: A simple method for VAE training with less of that KL-vanishing agony"
    
  The KL weight increases linearly, until it meets a certain threshold and keeps constant
  for the same number of epochs. After that, it decreases abruptly to zero again, and the
  cycle repeats.
  """

  def __init__(self, model):
    self.model = model
    self.kl_weight_increasing = True
    self.epoch = 1


  # The loss should have the form loss(y_true, y_pred), but in this
  # case y_pred is computed in the cost function

  @tf.function()
  def __call__(self, x_true):
    x_true = tf.cast(x_true, tf.float32)
      
    # Encode "song map" to get its latent representation and the parameters
    # of the distribution
    z_sample, mu, sd = self.model.encode(x_true)

    # Decode the latent representation. Due to the VAE architecture, we should
    # ideally get a reconstructed song map similar to the input.
    x_recons = self.model.decoder(z_sample)

    # Compute mean squared error, where our ground truth is the song map
    # we pass as input, so we "compare" the reconstruction to it.
      
    recons_error = tf.cast(
        tf.reduce_mean((x_true - x_recons) ** 2, axis=[1, 2, 3]),
        tf.float32)

    # Compute reverse KL divergence
    kl_divergence = -0.5 * tf.math.reduce_sum(
          1 + tf.math.log(tf.math.square(sd)) - tf.math.square(mu) - tf.math.square(sd),
          axis=1) # shape=(batch_size,)

    # Return metrics
    elbo = tf.reduce_mean(-kl_weight * kl_divergence - recons_error)
    mean_kl_divergence = tf.reduce_mean(kl_divergence)
    mean_recons_error = tf.reduce_mean(recons_error)

    return -elbo, mean_kl_divergence, mean_recons_error


class VAE(tf.keras.Model):
  # Main architecture, which connects the encoder with the decoder.

  def __init__(self, name="variational autoencoder", **kwargs):
    super(VAE, self).__init__(name=name, **kwargs)
    self.dim_x = (3, _CAP, 1)
    self.encoder = Encoder_Z(dim_z=120).build()
    self.decoder = Decoder_X(dim_z=120).build()
    self.cost_func = VAECost(self)

    # Get the path of the script that defines this method
    script_path = inspect.getfile(inspect.currentframe())

    # Get the directory containing the script
    script_dir = os.path.dirname(os.path.abspath(script_path))

    # Construct the path to the weights folder
    weights_dir = os.path.join(script_dir, 'weights') + os.sep
    
    # Load pretrained weights
    self.load_weights(weights_dir)

  @tf.function()
  def train_step(self, data):
    # Gradient descent
      
    with tf.GradientTape() as tape:
      neg_elbo, mean_kl_divergence, mean_recons_error = self.cost_func(data)

    gradients = tape.gradient(neg_elbo, self.trainable_variables)
    self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))

    return {"abs ELBO": neg_elbo, "mean KL": mean_kl_divergence,
            "mean recons": mean_recons_error,
            "kl weight": kl_weight}

  def encode(self, x_input: tf.Tensor) -> tuple[tf.Tensor]:
    """
    Get a "song map" and make a forward pass through the encoder, in order
    to return the latent representation and the distribution's parameters.

    Parameters:
    x_input (tf.Tensor): Song map to be encoded by the VAE.

    Returns:
    tf.Tensor: The parameters of the distribution which encode the song
               (mu, sd) and a sampled latent representation from this
               distribution (z_sample).
    """
      
    mu, rho = tf.split(self.encoder(x_input), num_or_size_splits=2, axis=1)
    sd = tf.math.log(1 + tf.math.exp(rho))
    z_sample = mu + sd * tf.random.normal(shape=(120,))
    return z_sample, mu, sd

  def generate(self, z_sample: tf.Tensor=None) -> tf.Tensor:
    """
    Decode a latent representation of a song.

    Parameters:
    z_sample (tf.Tensor): Song encoding outputed by the encoder. If
                          None, this sampling is done over an
                          unit Gaussian distribution.

    Returns:
    tf.Tensor: Song map corresponding to the encoding.
    """
      
    if z_sample == None:
      z_sample = tf.expand_dims(tf.random.normal(shape=(120,)), axis=0)
    return self.decoder(z_sample)