File size: 6,290 Bytes
63f1a8f 5a0bd26 92ac48c 523a819 92ac48c 63f1a8f 92ac48c 523a819 92ac48c 63f1a8f 92ac48c 523a819 92ac48c 3f36060 63f1a8f 3f36060 92ac48c 63f1a8f 92ac48c 661ebc2 92ac48c 0526e94 5a0bd26 92ac48c 5a0bd26 92ac48c 63f1a8f 92ac48c 5a0bd26 92ac48c 63f1a8f 92ac48c 5a0bd26 92ac48c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# Deep learning
import tensorflow as tf
# Methods for loading the weights into the model
import os
import inspect
_CAP = 3501 # Cap for the number of notes
class Encoder_Z(tf.keras.layers.Layer):
# Encoder part of the VAE
def __init__(self, dim_z, name="encoder", **kwargs):
super(Encoder_Z, self).__init__(name=name, **kwargs)
self.dim_x = (3, _CAP, 1)
self.dim_z = dim_z
def build(self):
layers = [tf.keras.layers.InputLayer(input_shape=self.dim_x)]
layers.append(tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=(2, 2)))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Flatten())
layers.append(tf.keras.layers.Dense(2000))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Dense(500))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Dense(self.dim_z * 2, activation=None, name="dist_params"))
return tf.keras.Sequential(layers)
class Decoder_X(tf.keras.layers.Layer):
# Decoder part of the VAE.
def __init__(self, dim_z, name="decoder", **kwargs):
super(Decoder_X, self).__init__(name=name, **kwargs)
self.dim_z = dim_z
def build(self):
# Build architecture
layers = [tf.keras.layers.InputLayer(input_shape=(self.dim_z,))]
layers.append(tf.keras.layers.Dense(500))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Dense(2000))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Dense((_CAP - 1) / 2 * 32, activation=None))
layers.append(tf.keras.layers.Reshape((1, int((_CAP - 1) / 2), 32)))
layers.append(tf.keras.layers.Conv2DTranspose(
filters=64, kernel_size=3, strides=2, padding='valid'))
layers.append(tf.keras.layers.ReLU())
layers.append(tf.keras.layers.Conv2DTranspose(
filters=1, kernel_size=3, strides=1, padding='same'))
return tf.keras.Sequential(layers)
kl_weight = tf.keras.backend.variable(0.125)
class VAECost:
"""
VAE cost with a schedule based on the Microsoft Research Blog's article
"Less pain, more gain: A simple method for VAE training with less of that KL-vanishing agony"
The KL weight increases linearly, until it meets a certain threshold and keeps constant
for the same number of epochs. After that, it decreases abruptly to zero again, and the
cycle repeats.
"""
def __init__(self, model):
self.model = model
self.kl_weight_increasing = True
self.epoch = 1
# The loss should have the form loss(y_true, y_pred), but in this
# case y_pred is computed in the cost function
@tf.function()
def __call__(self, x_true):
x_true = tf.cast(x_true, tf.float32)
# Encode "song map" to get its latent representation and the parameters
# of the distribution
z_sample, mu, sd = self.model.encode(x_true)
# Decode the latent representation. Due to the VAE architecture, we should
# ideally get a reconstructed song map similar to the input.
x_recons = self.model.decoder(z_sample)
# Compute mean squared error, where our ground truth is the song map
# we pass as input, so we "compare" the reconstruction to it.
recons_error = tf.cast(
tf.reduce_mean((x_true - x_recons) ** 2, axis=[1, 2, 3]),
tf.float32)
# Compute reverse KL divergence
kl_divergence = -0.5 * tf.math.reduce_sum(
1 + tf.math.log(tf.math.square(sd)) - tf.math.square(mu) - tf.math.square(sd),
axis=1) # shape=(batch_size,)
# Return metrics
elbo = tf.reduce_mean(-kl_weight * kl_divergence - recons_error)
mean_kl_divergence = tf.reduce_mean(kl_divergence)
mean_recons_error = tf.reduce_mean(recons_error)
return -elbo, mean_kl_divergence, mean_recons_error
class VAE(tf.keras.Model):
# Main architecture, which connects the encoder with the decoder.
def __init__(self, name="variational autoencoder", **kwargs):
super(VAE, self).__init__(name=name, **kwargs)
self.dim_x = (3, _CAP, 1)
self.encoder = Encoder_Z(dim_z=120).build()
self.decoder = Decoder_X(dim_z=120).build()
self.cost_func = VAECost(self)
# Get the path of the script that defines this method
script_path = inspect.getfile(inspect.currentframe())
# Get the directory containing the script
script_dir = os.path.dirname(os.path.abspath(script_path))
# Construct the path to the weights folder
weights_dir = os.path.join(script_dir, 'weights') + os.sep
# Load pretrained weights
self.load_weights(weights_dir)
@tf.function()
def train_step(self, data):
# Gradient descent
with tf.GradientTape() as tape:
neg_elbo, mean_kl_divergence, mean_recons_error = self.cost_func(data)
gradients = tape.gradient(neg_elbo, self.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
return {"abs ELBO": neg_elbo, "mean KL": mean_kl_divergence,
"mean recons": mean_recons_error,
"kl weight": kl_weight}
def encode(self, x_input: tf.Tensor) -> tuple[tf.Tensor]:
"""
Get a "song map" and make a forward pass through the encoder, in order
to return the latent representation and the distribution's parameters.
Parameters:
x_input (tf.Tensor): Song map to be encoded by the VAE.
Returns:
tf.Tensor: The parameters of the distribution which encode the song
(mu, sd) and a sampled latent representation from this
distribution (z_sample).
"""
mu, rho = tf.split(self.encoder(x_input), num_or_size_splits=2, axis=1)
sd = tf.math.log(1 + tf.math.exp(rho))
z_sample = mu + sd * tf.random.normal(shape=(120,))
return z_sample, mu, sd
def generate(self, z_sample: tf.Tensor=None) -> tf.Tensor:
"""
Decode a latent representation of a song.
Parameters:
z_sample (tf.Tensor): Song encoding outputed by the encoder. If
None, this sampling is done over an
unit Gaussian distribution.
Returns:
tf.Tensor: Song map corresponding to the encoding.
"""
if z_sample == None:
z_sample = tf.expand_dims(tf.random.normal(shape=(120,)), axis=0)
return self.decoder(z_sample)
|