TomRB22 commited on
Commit
da0a89f
1 Parent(s): 4aac37d

Minor improvements to README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -94,10 +94,10 @@ def generate(self, z_sample: tf.Tensor=None) -> tf.Tensor:
94
  Decode a latent representation of a song.
95
 
96
  Parameters:
97
- * z_sample (tf.Tensor): Song encoding outputed by the encoder. If None, this sampling is done over an unit Gaussian distribution.
98
 
99
  Returns:
100
- * tf.Tensor: Song map corresponding to the encoding.
101
 
102
  ## **_audio_**
103
 
@@ -110,10 +110,10 @@ Convert midi file to "song map" (dataframe where each note is broken
110
  into its components)
111
 
112
  Parameters:
113
- * midi_file (str): Path to the midi file.
114
 
115
  Returns:
116
- * pd.Dataframe: 3xN matrix where each column is a note, composed of pitch, duration and step.
117
 
118
  ### display_audio
119
 
@@ -123,11 +123,11 @@ def display_audio(pm: pretty_midi.PrettyMIDI, seconds=-1) -> display.Audio:
123
  Display a song in PrettyMIDI format as a display.Audio object. This method is especially useful in a Jupyter notebook.
124
 
125
  Parameters
126
- * pm (pretty_midi.PrettyMIDI): PrettyMIDI object containing a song.
127
- * seconds (int): Time fraction of the song to be displayed. When set to -1, the full length is taken.
128
 
129
  Returns:
130
- * display.Audio: Song as an object allowing for display.
131
 
132
  ### map_to_wav
133
 
@@ -138,12 +138,12 @@ Convert "song map" to midi file (reverse process with respect to
138
  midi_to_notes) and (optionally) save it, generating a PrettyMidi object in the process.
139
 
140
  Parameters:
141
- * song_map (pd.DataFrame): 3xN matrix where each column is a note, composed of pitch, duration and step.
142
- * out_file (str): Path or file to write .mid file to. If None, no saving is done.
143
- * velocity (int): Note loudness, i. e. the hardness a piano key is struck with.
144
 
145
  Returns:
146
- * pretty_midi.PrettyMIDI: PrettyMIDI object containing the song's representation.
147
 
148
  ### generate_and_display
149
 
@@ -157,11 +157,11 @@ def generate_and_display(model: VAE,
157
  Generate a song, (optionally) save it and display it.
158
 
159
  Parameters:
160
- * model (VAE): Instance of VAE to generate the song with.
161
- * out_file (str): Path or file to write .mid file to. If None, no saving is done.
162
- * z_sample (tf.Tensor): Song encoding used to generate a song. If None, perform generate an unconditioned piece.
163
- * velocity (int): Note loudness, i. e. the hardness a piano key is struck with.
164
- * seconds (int): Time fraction of the song to be displayed. When set to -1, the full length is taken.
165
 
166
  Returns:
167
- * display.Audio: Song as an object allowing for display.
 
94
  Decode a latent representation of a song.
95
 
96
  Parameters:
97
+ * ``z_sample (tf.Tensor)``: Song encoding outputed by the encoder. If None, this sampling is done over an unit Gaussian distribution.
98
 
99
  Returns:
100
+ * ``tf.Tensor``: Song map corresponding to the encoding.
101
 
102
  ## **_audio_**
103
 
 
110
  into its components)
111
 
112
  Parameters:
113
+ * ``midi_file (str)``: Path to the midi file.
114
 
115
  Returns:
116
+ * ``pd.DataFrame``: 3xN matrix where each column is a note, composed of pitch, duration and step.
117
 
118
  ### display_audio
119
 
 
123
  Display a song in PrettyMIDI format as a display.Audio object. This method is especially useful in a Jupyter notebook.
124
 
125
  Parameters
126
+ * ``pm (pretty_midi.PrettyMIDI)``: PrettyMIDI object containing a song.
127
+ * ``seconds (int)``: Time fraction of the song to be displayed. When set to -1, the full length is taken.
128
 
129
  Returns:
130
+ * ``display.Audio``: Song as an object allowing for display.
131
 
132
  ### map_to_wav
133
 
 
138
  midi_to_notes) and (optionally) save it, generating a PrettyMidi object in the process.
139
 
140
  Parameters:
141
+ * ``song_map (pd.DataFrame)``: 3xN matrix where each column is a note, composed of pitch, duration and step.
142
+ * ``out_file (str)``: Path or file to write .mid file to. If None, no saving is done.
143
+ * ``velocity (int)``: Note loudness, i. e. the hardness a piano key is struck with.
144
 
145
  Returns:
146
+ * ``pretty_midi.PrettyMIDI``: PrettyMIDI object containing the song's representation.
147
 
148
  ### generate_and_display
149
 
 
157
  Generate a song, (optionally) save it and display it.
158
 
159
  Parameters:
160
+ * ``model (VAE)``: Instance of VAE to generate the song with.
161
+ * ``out_file (str)``: Path or file to write .mid file to. If None, no saving is done.
162
+ * ``z_sample (tf.Tensor)``: Song encoding used to generate a song. If None, perform generate an unconditioned piece.
163
+ * ``velocity (int)``: Note loudness, i. e. the hardness a piano key is struck with.
164
+ * ``seconds (int)``: Time fraction of the song to be displayed. When set to -1, the full length is taken.
165
 
166
  Returns:
167
+ * ``display.Audio``: Song as an object allowing for display.