File size: 2,284 Bytes
9e467de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- lt
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small lt - Lithuanian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: None
split: None
args: 'config: lt, split: test'
metrics:
- name: Wer
type: wer
value: 32.49711764004294
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small lt - Lithuanian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3840
- Wer: 32.4971
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3788 | 0.9 | 500 | 0.4432 | 45.1716 |
| 0.2087 | 1.8 | 1000 | 0.3671 | 37.6456 |
| 0.0961 | 2.7 | 1500 | 0.3548 | 35.5703 |
| 0.0479 | 3.6 | 2000 | 0.3609 | 34.1709 |
| 0.0157 | 4.5 | 2500 | 0.3665 | 33.3400 |
| 0.0089 | 5.4 | 3000 | 0.3775 | 32.7754 |
| 0.0038 | 6.29 | 3500 | 0.3826 | 32.5607 |
| 0.0033 | 7.19 | 4000 | 0.3840 | 32.4971 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|