Tommert25's picture
Update README.md
781b307
|
raw
history blame
3.02 kB
metadata
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: RobBERTBestModelOct11
    results: []

robbert0410_lrate7.5b16

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5355
  • Precisions: 0.8523
  • Recall: 0.8173
  • F-measure: 0.8307
  • Accuracy: 0.9209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.6127 1.0 236 0.3656 0.8687 0.6888 0.7011 0.8817
0.3078 2.0 472 0.3390 0.8253 0.7452 0.7612 0.8947
0.1742 3.0 708 0.3899 0.7602 0.7560 0.7469 0.8957
0.1242 4.0 944 0.4402 0.8560 0.7678 0.7861 0.9055
0.0749 5.0 1180 0.4206 0.8163 0.8139 0.8127 0.9121
0.0533 6.0 1416 0.4824 0.8257 0.7936 0.8060 0.9124
0.0366 7.0 1652 0.4927 0.8506 0.7956 0.8158 0.9176
0.0273 8.0 1888 0.5638 0.8631 0.7855 0.8093 0.9202
0.0206 9.0 2124 0.5507 0.8322 0.7957 0.8096 0.9141
0.0154 10.0 2360 0.5355 0.8523 0.8173 0.8307 0.9209
0.0105 11.0 2596 0.5812 0.8301 0.7961 0.8088 0.9162
0.0086 12.0 2832 0.6084 0.8357 0.8065 0.8192 0.9130
0.0046 13.0 3068 0.6035 0.8310 0.7948 0.8104 0.9137
0.0036 14.0 3304 0.6034 0.8223 0.7980 0.8074 0.9134
0.0043 15.0 3540 0.6146 0.8198 0.7869 0.7999 0.9120
0.0018 16.0 3776 0.6070 0.8244 0.7894 0.8029 0.9134

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0