--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert0510_lrate10b32 results: [] --- # robbert0510_lrate10b32 This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5022 - Precisions: 0.8217 - Recall: 0.7879 - F-measure: 0.8011 - Accuracy: 0.9168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.625 | 1.0 | 118 | 0.4136 | 0.8611 | 0.6751 | 0.6866 | 0.8713 | | 0.3164 | 2.0 | 236 | 0.3284 | 0.8110 | 0.7374 | 0.7474 | 0.8959 | | 0.187 | 3.0 | 354 | 0.3490 | 0.7578 | 0.7662 | 0.7524 | 0.9060 | | 0.1083 | 4.0 | 472 | 0.3738 | 0.8164 | 0.7748 | 0.7855 | 0.9120 | | 0.0778 | 5.0 | 590 | 0.4234 | 0.7579 | 0.7677 | 0.7583 | 0.9042 | | 0.0526 | 6.0 | 708 | 0.4802 | 0.8348 | 0.7556 | 0.7688 | 0.9049 | | 0.0358 | 7.0 | 826 | 0.4723 | 0.8322 | 0.7671 | 0.7909 | 0.9107 | | 0.023 | 8.0 | 944 | 0.4758 | 0.8024 | 0.7975 | 0.7973 | 0.9107 | | 0.016 | 9.0 | 1062 | 0.5112 | 0.7991 | 0.7889 | 0.7917 | 0.9084 | | 0.0117 | 10.0 | 1180 | 0.5022 | 0.8217 | 0.7879 | 0.8011 | 0.9168 | | 0.0072 | 11.0 | 1298 | 0.5286 | 0.8190 | 0.7875 | 0.8009 | 0.9165 | | 0.0052 | 12.0 | 1416 | 0.5207 | 0.8056 | 0.7929 | 0.7987 | 0.9135 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0