End of training
Browse files- README.md +77 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pdelobelle/robbert-v2-dutch-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: robbert0510_lrate9b16
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# robbert0510_lrate9b16
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5873
|
22 |
+
- Precisions: 0.8240
|
23 |
+
- Recall: 0.8030
|
24 |
+
- F-measure: 0.8121
|
25 |
+
- Accuracy: 0.9175
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 9e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.6115 | 1.0 | 236 | 0.3939 | 0.8592 | 0.6769 | 0.6912 | 0.8757 |
|
57 |
+
| 0.3166 | 2.0 | 472 | 0.3750 | 0.7447 | 0.7640 | 0.7458 | 0.8897 |
|
58 |
+
| 0.194 | 3.0 | 708 | 0.3445 | 0.7683 | 0.7462 | 0.7525 | 0.9025 |
|
59 |
+
| 0.1292 | 4.0 | 944 | 0.3776 | 0.8345 | 0.7570 | 0.7754 | 0.9072 |
|
60 |
+
| 0.0755 | 5.0 | 1180 | 0.4667 | 0.7897 | 0.8244 | 0.7995 | 0.9079 |
|
61 |
+
| 0.0556 | 6.0 | 1416 | 0.4879 | 0.8233 | 0.7809 | 0.7973 | 0.9086 |
|
62 |
+
| 0.0413 | 7.0 | 1652 | 0.4901 | 0.7770 | 0.8020 | 0.7846 | 0.9049 |
|
63 |
+
| 0.0245 | 8.0 | 1888 | 0.5467 | 0.8159 | 0.7679 | 0.7836 | 0.9086 |
|
64 |
+
| 0.015 | 9.0 | 2124 | 0.5914 | 0.8156 | 0.7858 | 0.7957 | 0.9109 |
|
65 |
+
| 0.0129 | 10.0 | 2360 | 0.5640 | 0.8041 | 0.8160 | 0.8079 | 0.9133 |
|
66 |
+
| 0.0055 | 11.0 | 2596 | 0.5848 | 0.8084 | 0.8044 | 0.8055 | 0.9142 |
|
67 |
+
| 0.0068 | 12.0 | 2832 | 0.5752 | 0.8097 | 0.7957 | 0.8017 | 0.9140 |
|
68 |
+
| 0.0036 | 13.0 | 3068 | 0.5873 | 0.8240 | 0.8030 | 0.8121 | 0.9175 |
|
69 |
+
| 0.0025 | 14.0 | 3304 | 0.5992 | 0.8217 | 0.7913 | 0.8037 | 0.9155 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.34.0
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Datasets 2.14.5
|
77 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 464775913
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:123fc7f961a36eb2d0c3dc221c6c28166ff444cde762ebb42fce6c3fc9df47fa
|
3 |
size 464775913
|