End of training
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pdelobelle/robbert-v2-dutch-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: robbert_seed35_1311
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# robbert_seed35_1311
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3736
|
22 |
+
- Precisions: 0.8703
|
23 |
+
- Recall: 0.8320
|
24 |
+
- F-measure: 0.8460
|
25 |
+
- Accuracy: 0.9455
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 7.5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 35
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.4597 | 1.0 | 236 | 0.2601 | 0.8795 | 0.7027 | 0.7178 | 0.9224 |
|
57 |
+
| 0.2359 | 2.0 | 472 | 0.2642 | 0.7554 | 0.7436 | 0.7448 | 0.9209 |
|
58 |
+
| 0.1425 | 3.0 | 708 | 0.2765 | 0.8100 | 0.7809 | 0.7872 | 0.9318 |
|
59 |
+
| 0.0893 | 4.0 | 944 | 0.2727 | 0.8404 | 0.7708 | 0.7885 | 0.9340 |
|
60 |
+
| 0.0597 | 5.0 | 1180 | 0.3136 | 0.8572 | 0.7712 | 0.7963 | 0.9361 |
|
61 |
+
| 0.0446 | 6.0 | 1416 | 0.3246 | 0.8474 | 0.7824 | 0.7947 | 0.9409 |
|
62 |
+
| 0.029 | 7.0 | 1652 | 0.3266 | 0.8266 | 0.7944 | 0.7985 | 0.9361 |
|
63 |
+
| 0.0181 | 8.0 | 1888 | 0.3377 | 0.8564 | 0.8139 | 0.8257 | 0.9422 |
|
64 |
+
| 0.0152 | 9.0 | 2124 | 0.3578 | 0.8240 | 0.8439 | 0.8297 | 0.9426 |
|
65 |
+
| 0.0121 | 10.0 | 2360 | 0.3270 | 0.8659 | 0.8292 | 0.8444 | 0.9475 |
|
66 |
+
| 0.0094 | 11.0 | 2596 | 0.3510 | 0.8742 | 0.8274 | 0.8455 | 0.9467 |
|
67 |
+
| 0.0057 | 12.0 | 2832 | 0.3674 | 0.8435 | 0.8350 | 0.8379 | 0.9441 |
|
68 |
+
| 0.0042 | 13.0 | 3068 | 0.3746 | 0.8708 | 0.8313 | 0.8458 | 0.9458 |
|
69 |
+
| 0.0027 | 14.0 | 3304 | 0.3736 | 0.8703 | 0.8320 | 0.8460 | 0.9455 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.35.0
|
75 |
+
- Pytorch 2.1.0+cu118
|
76 |
+
- Datasets 2.14.6
|
77 |
+
- Tokenizers 0.14.1
|
runs/Nov14_10-28-29_4376ee55f323/events.out.tfevents.1699958464.4376ee55f323.1225.9
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:789e8ec5ca2ce1599e7096f601f0b02d452dddc6b007ac925011df353d43aa9a
|
3 |
+
size 568
|