File size: 2,820 Bytes
42f2cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert_seed36_1311
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert_seed36_1311
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3538
- Precisions: 0.8351
- Recall: 0.8079
- F-measure: 0.8173
- Accuracy: 0.9422
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 14
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.4364 | 1.0 | 236 | 0.2547 | 0.8525 | 0.7285 | 0.7372 | 0.9231 |
| 0.2196 | 2.0 | 472 | 0.2772 | 0.8456 | 0.7521 | 0.7718 | 0.9291 |
| 0.1273 | 3.0 | 708 | 0.2681 | 0.8056 | 0.7798 | 0.7897 | 0.9315 |
| 0.0799 | 4.0 | 944 | 0.2971 | 0.8835 | 0.7898 | 0.8158 | 0.9393 |
| 0.0541 | 5.0 | 1180 | 0.3302 | 0.8515 | 0.7815 | 0.8016 | 0.9373 |
| 0.0358 | 6.0 | 1416 | 0.3291 | 0.8140 | 0.7901 | 0.7994 | 0.9385 |
| 0.0217 | 7.0 | 1652 | 0.3538 | 0.8351 | 0.8079 | 0.8173 | 0.9422 |
| 0.0145 | 8.0 | 1888 | 0.3622 | 0.8331 | 0.8000 | 0.8113 | 0.9431 |
| 0.0092 | 9.0 | 2124 | 0.3782 | 0.8190 | 0.8098 | 0.8116 | 0.9402 |
| 0.0091 | 10.0 | 2360 | 0.4023 | 0.8499 | 0.7967 | 0.8149 | 0.9422 |
| 0.0068 | 11.0 | 2596 | 0.3932 | 0.8293 | 0.8062 | 0.8154 | 0.9409 |
| 0.0053 | 12.0 | 2832 | 0.3894 | 0.8415 | 0.7942 | 0.8108 | 0.9412 |
| 0.0023 | 13.0 | 3068 | 0.3910 | 0.8379 | 0.7987 | 0.8127 | 0.9426 |
| 0.0035 | 14.0 | 3304 | 0.3919 | 0.8349 | 0.7990 | 0.8110 | 0.9422 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|