memorag-qwen2-7b-inst / modeling_utils.py
qhjqhj00
init
74ae950
import math
import torch
from tqdm import tqdm
from dataclasses import dataclass
from contextlib import nullcontext
from typing import Mapping, Optional, Tuple
from accelerate import Accelerator
from collections import defaultdict
from transformers.modeling_outputs import BaseModelOutputWithPast
def optional_grad_ctx(with_grad=False):
if with_grad:
return nullcontext()
else:
return torch.no_grad()
def move_to_device(data, device):
"""
Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
"""
if isinstance(data, Mapping):
return type(data)({k: move_to_device(v, device) for k, v in data.items()})
elif isinstance(data, (tuple, list)):
return type(data)(move_to_device(v, device) for v in data)
elif isinstance(data, torch.Tensor):
kwargs = {"device": device}
return data.to(**kwargs)
else:
return data
def get_shifted_labels(input_ids):
if isinstance(input_ids, torch.Tensor):
labels = input_ids.clone()
labels = torch.cat([labels[:, 1:], labels.new_zeros((input_ids.shape[0], 1)) - 100], dim=-1)
elif isinstance(input_ids, list) and isinstance(input_ids[0], int):
labels = input_ids.copy()
labels = labels[1:] + [-100]
elif isinstance(input_ids, list) and isinstance(input_ids[0], list):
labels = input_ids.copy()
for i, label in enumerate(labels):
labels[i] = labels[i][1:] + [-100]
else:
raise NotImplementedError
return labels
def compute_loss(logits, labels, shift=False):
"""
Returns:
token_loss: batch_size, seq_length
"""
if shift:
labels = get_shifted_labels(labels)
labels = labels.to(logits.device)
batch_size = logits.shape[0]
# NOTE: the loss on -100 labels is 0 by default
token_loss = torch.nn.functional.cross_entropy(
logits.flatten(0, 1),
labels.reshape(-1),
reduction="none"
).reshape(batch_size, -1) # batch_size, seq_len
# print(token_loss)
valid_token_num = (labels != -100).sum(-1) # batch_size
all_valid_token_num = valid_token_num.sum()
if all_valid_token_num > 0:
loss = token_loss.sum() / valid_token_num.sum()
else:
loss = token_loss.sum()
batch_loss = token_loss.sum(-1) / valid_token_num
# prevent nan
if (valid_token_num == 0).any():
batch_loss = batch_loss.masked_fill(valid_token_num == 0, 0.)
return loss, batch_loss, token_loss
@torch.no_grad()
def evaluate_perplexity(model, dataloader, accelerator:Optional[Accelerator]=None):
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
dataloader = accelerator.prepare(dataloader)
# if accelerator.process_index == 0:
# for name, x in model.named_parameters():
# print(f"{name: ^80} {x.dtype}")
all_loss = defaultdict(list)
for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
# NOTE: important to reset memory for every batch
if hasattr(model, "memory"):
model.memory.reset()
# the seq id
index = x.pop("index")
# length is used to group training data, no use here
length = x.pop("length", None)
output = model(**x)
valid_token_num = (x["labels"] != -100).sum(-1)
# NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
if hasattr(output, "batch_loss"):
# output from our model has batch_loss by default
batch_loss = output.batch_loss
else:
# output from other models does not
loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
index = index.tolist()
batch_loss = batch_loss.tolist()
valid_token_num = valid_token_num.tolist()
if accelerator is not None and accelerator.num_processes > 1:
# num_device * batch_size
index = accelerator.gather_for_metrics(index)
batch_loss = accelerator.gather_for_metrics(batch_loss)
valid_token_num = accelerator.gather_for_metrics(valid_token_num)
for _id, _loss, _num in zip(index, batch_loss, valid_token_num):
# loss times num is the total loss of all valid tokens
all_loss[_id].append((_loss * _num, _num))
all_loss = dict(all_loss)
for _id, loss_and_num in all_loss.items():
# sum up the loss for all valid tokens in the entire sequence, and divide the number of valid tokens
all_loss[_id] = sum([x[0] for x in loss_and_num]) / sum(x[1] for x in loss_and_num)
# average across then take exp
perplexity = math.exp(sum(all_loss.values()) / len(all_loss))
return perplexity
@torch.no_grad()
def evaluate_generation(model, dataloader, accelerator:Optional[Accelerator]=None, tokenizer=None, return_new_tokens_only=True, **generation_config):
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
dataloader = accelerator.prepare(dataloader)
all_indices = []
all_outputs = []
index = 0
for i, x in enumerate(tqdm(dataloader, desc="Computing Generation")):
# if i > 3:
# break
# NOTE: important to reset memory for every batch
if hasattr(model, "memory"):
model.memory.reset()
# length is used to group training data, no use here
length = x.pop("length", None)
# if indices are None, we use batch size
indices = x.pop("index", None)
if indices is None:
indices = list(range(index, index + x['input_ids'].shape[0]))
index += x['input_ids'].shape[0]
else:
indices = indices.tolist()
outputs = model.generate(**x, **generation_config)
if return_new_tokens_only:
start_idx = x["input_ids"].shape[1]
outputs = outputs[:, start_idx:]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
if accelerator is not None and accelerator.num_processes > 1:
outputs = accelerator.gather_for_metrics(outputs)
indices = accelerator.gather_for_metrics(indices)
outputs = outputs
indices = indices
all_indices.extend(indices)
all_outputs.extend(outputs)
return all_indices, all_outputs
@torch.no_grad()
def evaluate_nll(model, dataloader, accelerator:Optional[Accelerator]=None):
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
dataloader = accelerator.prepare(dataloader)
# if accelerator.process_index == 0:
# for name, x in model.named_parameters():
# print(f"{name: ^80} {x.dtype}")
all_loss = defaultdict(list)
for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
# NOTE: important to reset memory for every batch
if hasattr(model, "memory"):
model.memory.reset()
# the seq id
index = x.pop("index")
# length is used to group training data, no use here
length = x.pop("length", None)
output = model(**x)
valid_token_num = (x["labels"] != -100).sum()
# NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
if hasattr(output, "batch_loss"):
# output from our model has batch_loss by default
batch_loss = output.batch_loss
else:
# output from other models does not
loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
if accelerator is not None and accelerator.num_processes > 1:
# num_device * batch_size
index = accelerator.gather_for_metrics(index)
batch_loss = accelerator.gather_for_metrics(batch_loss)
valid_token_num = accelerator.gather_for_metrics(valid_token_num)
for _id, _loss in zip(index.tolist(), batch_loss.tolist()):
# loss times num is the total loss of all valid tokens
all_loss[_id].append(_loss)
return all_loss
@dataclass
class ModelOutput(BaseModelOutputWithPast):
loss: Optional[torch.FloatTensor] = None
batch_loss: Optional[torch.FloatTensor] = None
token_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
########## Various RoPE Scaling Methods Below (wrap the encoding process within the module for convenience) ##########
def get_rope(head_dim, base, max_position_embeddings, rope_scaling=None):
"""
Get rope module. {native, linear scaling, dynamic ntk scaling, yarn scaling, llama3 scaling}
"""
if rope_scaling is None:
rope = RotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
)
else:
scaling_type = rope_scaling["type"]
scaling_factor = rope_scaling["factor"]
if scaling_type == "linear":
rope = LinearScalingRotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "dynamic":
rope = DynamicNTKScalingRotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "yarn":
rope = YarnRotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "yarn-t":
rope = YarnDynamicTemperatureRotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "yarn-t-logn":
rope = YarnDynamicTemperatureLogNRotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
)
elif scaling_type == "llama3":
rope = Llama3RotaryEmbedding(
dim=head_dim,
base=base,
max_position_embeddings=max_position_embeddings,
scaling_factor=scaling_factor,
original_max_position_embeddings=rope_scaling.get("original_max_position_embeddings", 8192),
low_freq_factor=rope_scaling.get("low_freq_factor", 1),
high_freq_factor=rope_scaling.get("high_freq_factor", 4),
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
return rope
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
# batch_size, 1, key_len, head_dim
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class LinearScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
class YarnRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
super().__init__()
self.base = base
self.dim = dim
self.scaling_factor = scaling_factor
self.beta_slow = beta_slow
self.beta_fast = beta_fast
self.max_position_embeddings = max_position_embeddings
self._set_cos_sin_cache(
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
)
def _get_factor(self):
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
fast_dim = max(math.floor(fast_dim), 0)
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
if fast_dim == slow_dim:
slow_dim += 0.001
# NOTE: very important to use full precision here so that the factor is correct
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
dim_factor = torch.clamp(dim_factor, 0, 1)
# align with the paper notation
return (1 - dim_factor)
def _get_temperature(self):
if self.scaling_factor <= 1:
return 1.0
return 0.07 * math.log(self.scaling_factor) + 1.0
def _set_cos_sin_cache(self, seq_len, device, dtype):
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
# dim / 2
freq = self.base ** dim_arange
theta = 1 / freq
interleave_theta = theta / self.scaling_factor
factor = self._get_factor().to(device)
yarn_theta = factor * theta + (1 - factor) * interleave_theta
self.register_buffer("inv_freq", yarn_theta, persistent=False)
t = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
# get attention temperature
temperature = self._get_temperature()
self.register_buffer("cos_cached", emb.cos() * temperature, persistent=False)
self.register_buffer("sin_cached", emb.sin() * temperature, persistent=False)
self.max_seq_len_cached = seq_len
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self.scaling_factor = seq_len / self.max_position_embeddings
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class YarnDynamicTemperatureRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
super().__init__()
self.base = base
self.dim = dim
self.scaling_factor = scaling_factor
self.beta_slow = beta_slow
self.beta_fast = beta_fast
self.max_position_embeddings = max_position_embeddings
self._set_cos_sin_cache(
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
)
def _get_factor(self):
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
fast_dim = max(math.floor(fast_dim), 0)
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
if fast_dim == slow_dim:
slow_dim += 0.001
# NOTE: very important to use full precision here so that the factor is correct
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
dim_factor = torch.clamp(dim_factor, 0, 1)
# align with the paper notation
return (1 - dim_factor)
def _set_cos_sin_cache(self, seq_len, device, dtype):
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
# dim / 2
freq = self.base ** dim_arange
theta = 1 / freq
interleave_theta = theta / self.scaling_factor
factor = self._get_factor().to(device)
yarn_theta = factor * theta + (1 - factor) * interleave_theta
self.register_buffer("inv_freq", yarn_theta, persistent=False)
positions = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(positions, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
# NOTE: get attention temperature that will be applied on the query vector
# temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
temperature[:self.max_position_embeddings] = 1
self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
self.max_seq_len_cached = seq_len
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self.scaling_factor = seq_len / self.max_position_embeddings
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
# batch_size, 1, key_len, head_dim
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_position_ids = position_ids[:, -q.shape[2]:]
temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = q_cos * temperature
q_sin = q_sin * temperature
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class YarnDynamicTemperatureLogNRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
super().__init__()
self.base = base
self.dim = dim
self.scaling_factor = scaling_factor
self.beta_slow = beta_slow
self.beta_fast = beta_fast
self.max_position_embeddings = max_position_embeddings
self._set_cos_sin_cache(
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
)
def _get_factor(self):
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
fast_dim = max(math.floor(fast_dim), 0)
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
if fast_dim == slow_dim:
slow_dim += 0.001
# NOTE: very important to use full precision here so that the factor is correct
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
dim_factor = torch.clamp(dim_factor, 0, 1)
# align with the paper notation
return (1 - dim_factor)
def _set_cos_sin_cache(self, seq_len, device, dtype):
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
# dim / 2
freq = self.base ** dim_arange
theta = 1 / freq
interleave_theta = theta / self.scaling_factor
factor = self._get_factor().to(device)
yarn_theta = factor * theta + (1 - factor) * interleave_theta
self.register_buffer("inv_freq", yarn_theta, persistent=False)
positions = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(positions, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
# NOTE: get attention temperature that will be applied on the query vector
temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
# temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
temperature[:self.max_position_embeddings] = 1
self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
self.max_seq_len_cached = seq_len
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self.scaling_factor = seq_len / self.max_position_embeddings
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
# batch_size, 1, key_len, head_dim
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_position_ids = position_ids[:, -q.shape[2]:]
temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = q_cos * temperature
q_sin = q_sin * temperature
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed
class Llama3RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=8192, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=8192, low_freq_factor=1, high_freq_factor=4):
super().__init__()
self.base = base
self.dim = dim
self.scaling_factor = scaling_factor
self.original_max_position_embeddings = original_max_position_embeddings
self.max_position_embeddings = max(max_position_embeddings, int(original_max_position_embeddings * scaling_factor))
self.low_freq_factor = low_freq_factor
self.high_freq_factor = high_freq_factor
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
low_freq_wavelen = self.original_max_position_embeddings / low_freq_factor
high_freq_wavelen = self.original_max_position_embeddings / high_freq_factor
new_freqs = []
for freq in inv_freq:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
new_freqs.append(freq)
elif wavelen > low_freq_wavelen:
new_freqs.append(freq / scaling_factor)
else:
assert low_freq_wavelen != high_freq_wavelen
smooth = (self.original_max_position_embeddings / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
inv_freq = torch.tensor(new_freqs, dtype=inv_freq.dtype, device=inv_freq.device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=device)
def _set_cos_sin_cache(self, seq_len, device):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
def forward(self, q, k, position_ids):
seq_len = max(position_ids.max().item() + 1, k.shape[2])
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=k.device)
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
q_cos = k_cos[..., -q.shape[2]:, :]
q_sin = k_sin[..., -q.shape[2]:, :]
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
return q_embed, k_embed