Add new SentenceTransformer model.
Browse files- README.md +733 -0
- config.json +30 -0
- config_sentence_transformers.json +10 -0
- modules.json +8 -0
README.md
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
---
|
9 |
+
|
10 |
+
# SentenceTransformer
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
- **Model Type:** Sentence Transformer
|
18 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
19 |
+
- **Maximum Sequence Length:** None tokens
|
20 |
+
- **Output Dimensionality:** None tokens
|
21 |
+
- **Similarity Function:** Cosine Similarity
|
22 |
+
<!-- - **Training Dataset:** Unknown -->
|
23 |
+
<!-- - **Language:** Unknown -->
|
24 |
+
<!-- - **License:** Unknown -->
|
25 |
+
|
26 |
+
### Model Sources
|
27 |
+
|
28 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
29 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
30 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
31 |
+
|
32 |
+
### Full Model Architecture
|
33 |
+
|
34 |
+
```
|
35 |
+
SentenceTransformer(
|
36 |
+
(0): ConcatCustomPooling(
|
37 |
+
(model): BertModel(
|
38 |
+
(embeddings): BertEmbeddings(
|
39 |
+
(word_embeddings): Embedding(30522, 1024, padding_idx=0)
|
40 |
+
(position_embeddings): Embedding(512, 1024)
|
41 |
+
(token_type_embeddings): Embedding(2, 1024)
|
42 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(encoder): BertEncoder(
|
46 |
+
(layer): ModuleList(
|
47 |
+
(0): BertLayer(
|
48 |
+
(attention): BertAttention(
|
49 |
+
(self): BertSelfAttention(
|
50 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
51 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
52 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
53 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
54 |
+
)
|
55 |
+
(output): BertSelfOutput(
|
56 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
57 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
58 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(intermediate): BertIntermediate(
|
62 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
63 |
+
(intermediate_act_fn): GELUActivation()
|
64 |
+
)
|
65 |
+
(output): BertOutput(
|
66 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
67 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
)
|
71 |
+
(1): BertLayer(
|
72 |
+
(attention): BertAttention(
|
73 |
+
(self): BertSelfAttention(
|
74 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
75 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
76 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
77 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
78 |
+
)
|
79 |
+
(output): BertSelfOutput(
|
80 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
81 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
82 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
83 |
+
)
|
84 |
+
)
|
85 |
+
(intermediate): BertIntermediate(
|
86 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
87 |
+
(intermediate_act_fn): GELUActivation()
|
88 |
+
)
|
89 |
+
(output): BertOutput(
|
90 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
91 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
)
|
95 |
+
(2): BertLayer(
|
96 |
+
(attention): BertAttention(
|
97 |
+
(self): BertSelfAttention(
|
98 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
99 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
100 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
101 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
102 |
+
)
|
103 |
+
(output): BertSelfOutput(
|
104 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
105 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
106 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
107 |
+
)
|
108 |
+
)
|
109 |
+
(intermediate): BertIntermediate(
|
110 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
111 |
+
(intermediate_act_fn): GELUActivation()
|
112 |
+
)
|
113 |
+
(output): BertOutput(
|
114 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
115 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
)
|
119 |
+
(3): BertLayer(
|
120 |
+
(attention): BertAttention(
|
121 |
+
(self): BertSelfAttention(
|
122 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
123 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
124 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
125 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
126 |
+
)
|
127 |
+
(output): BertSelfOutput(
|
128 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
129 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
130 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
131 |
+
)
|
132 |
+
)
|
133 |
+
(intermediate): BertIntermediate(
|
134 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
135 |
+
(intermediate_act_fn): GELUActivation()
|
136 |
+
)
|
137 |
+
(output): BertOutput(
|
138 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(4): BertLayer(
|
144 |
+
(attention): BertAttention(
|
145 |
+
(self): BertSelfAttention(
|
146 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
147 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
148 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
(output): BertSelfOutput(
|
152 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
153 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
154 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
(intermediate): BertIntermediate(
|
158 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
159 |
+
(intermediate_act_fn): GELUActivation()
|
160 |
+
)
|
161 |
+
(output): BertOutput(
|
162 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
163 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
)
|
167 |
+
(5): BertLayer(
|
168 |
+
(attention): BertAttention(
|
169 |
+
(self): BertSelfAttention(
|
170 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
171 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
172 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
173 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
174 |
+
)
|
175 |
+
(output): BertSelfOutput(
|
176 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
177 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
178 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
179 |
+
)
|
180 |
+
)
|
181 |
+
(intermediate): BertIntermediate(
|
182 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
183 |
+
(intermediate_act_fn): GELUActivation()
|
184 |
+
)
|
185 |
+
(output): BertOutput(
|
186 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
187 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
(6): BertLayer(
|
192 |
+
(attention): BertAttention(
|
193 |
+
(self): BertSelfAttention(
|
194 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
195 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
196 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
197 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
198 |
+
)
|
199 |
+
(output): BertSelfOutput(
|
200 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
201 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
202 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
(intermediate): BertIntermediate(
|
206 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
207 |
+
(intermediate_act_fn): GELUActivation()
|
208 |
+
)
|
209 |
+
(output): BertOutput(
|
210 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
211 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
)
|
215 |
+
(7): BertLayer(
|
216 |
+
(attention): BertAttention(
|
217 |
+
(self): BertSelfAttention(
|
218 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
219 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
220 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
221 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
222 |
+
)
|
223 |
+
(output): BertSelfOutput(
|
224 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
225 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
226 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
227 |
+
)
|
228 |
+
)
|
229 |
+
(intermediate): BertIntermediate(
|
230 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
231 |
+
(intermediate_act_fn): GELUActivation()
|
232 |
+
)
|
233 |
+
(output): BertOutput(
|
234 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
235 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
)
|
239 |
+
(8): BertLayer(
|
240 |
+
(attention): BertAttention(
|
241 |
+
(self): BertSelfAttention(
|
242 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
243 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
244 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
245 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
246 |
+
)
|
247 |
+
(output): BertSelfOutput(
|
248 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
249 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
)
|
253 |
+
(intermediate): BertIntermediate(
|
254 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
255 |
+
(intermediate_act_fn): GELUActivation()
|
256 |
+
)
|
257 |
+
(output): BertOutput(
|
258 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
259 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
)
|
263 |
+
(9): BertLayer(
|
264 |
+
(attention): BertAttention(
|
265 |
+
(self): BertSelfAttention(
|
266 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
267 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
268 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
269 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
270 |
+
)
|
271 |
+
(output): BertSelfOutput(
|
272 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
273 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
274 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
275 |
+
)
|
276 |
+
)
|
277 |
+
(intermediate): BertIntermediate(
|
278 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
279 |
+
(intermediate_act_fn): GELUActivation()
|
280 |
+
)
|
281 |
+
(output): BertOutput(
|
282 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
283 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(10): BertLayer(
|
288 |
+
(attention): BertAttention(
|
289 |
+
(self): BertSelfAttention(
|
290 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
291 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
292 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
293 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
294 |
+
)
|
295 |
+
(output): BertSelfOutput(
|
296 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
297 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
298 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
299 |
+
)
|
300 |
+
)
|
301 |
+
(intermediate): BertIntermediate(
|
302 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
303 |
+
(intermediate_act_fn): GELUActivation()
|
304 |
+
)
|
305 |
+
(output): BertOutput(
|
306 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
307 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
308 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
309 |
+
)
|
310 |
+
)
|
311 |
+
(11): BertLayer(
|
312 |
+
(attention): BertAttention(
|
313 |
+
(self): BertSelfAttention(
|
314 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
315 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
316 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
317 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
318 |
+
)
|
319 |
+
(output): BertSelfOutput(
|
320 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
321 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
322 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(intermediate): BertIntermediate(
|
326 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
327 |
+
(intermediate_act_fn): GELUActivation()
|
328 |
+
)
|
329 |
+
(output): BertOutput(
|
330 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
331 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
332 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
333 |
+
)
|
334 |
+
)
|
335 |
+
(12): BertLayer(
|
336 |
+
(attention): BertAttention(
|
337 |
+
(self): BertSelfAttention(
|
338 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
339 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
340 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
341 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
342 |
+
)
|
343 |
+
(output): BertSelfOutput(
|
344 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
345 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
346 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
347 |
+
)
|
348 |
+
)
|
349 |
+
(intermediate): BertIntermediate(
|
350 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
351 |
+
(intermediate_act_fn): GELUActivation()
|
352 |
+
)
|
353 |
+
(output): BertOutput(
|
354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
)
|
359 |
+
(13): BertLayer(
|
360 |
+
(attention): BertAttention(
|
361 |
+
(self): BertSelfAttention(
|
362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
366 |
+
)
|
367 |
+
(output): BertSelfOutput(
|
368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
371 |
+
)
|
372 |
+
)
|
373 |
+
(intermediate): BertIntermediate(
|
374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
375 |
+
(intermediate_act_fn): GELUActivation()
|
376 |
+
)
|
377 |
+
(output): BertOutput(
|
378 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
379 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
380 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(14): BertLayer(
|
384 |
+
(attention): BertAttention(
|
385 |
+
(self): BertSelfAttention(
|
386 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
387 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
388 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
389 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
390 |
+
)
|
391 |
+
(output): BertSelfOutput(
|
392 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
393 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
394 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
395 |
+
)
|
396 |
+
)
|
397 |
+
(intermediate): BertIntermediate(
|
398 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
399 |
+
(intermediate_act_fn): GELUActivation()
|
400 |
+
)
|
401 |
+
(output): BertOutput(
|
402 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
403 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
404 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
405 |
+
)
|
406 |
+
)
|
407 |
+
(15): BertLayer(
|
408 |
+
(attention): BertAttention(
|
409 |
+
(self): BertSelfAttention(
|
410 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
411 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
412 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
413 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
414 |
+
)
|
415 |
+
(output): BertSelfOutput(
|
416 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
417 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
418 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
419 |
+
)
|
420 |
+
)
|
421 |
+
(intermediate): BertIntermediate(
|
422 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
423 |
+
(intermediate_act_fn): GELUActivation()
|
424 |
+
)
|
425 |
+
(output): BertOutput(
|
426 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
427 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
428 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
429 |
+
)
|
430 |
+
)
|
431 |
+
(16): BertLayer(
|
432 |
+
(attention): BertAttention(
|
433 |
+
(self): BertSelfAttention(
|
434 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
435 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
436 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
437 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
438 |
+
)
|
439 |
+
(output): BertSelfOutput(
|
440 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
441 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
442 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
443 |
+
)
|
444 |
+
)
|
445 |
+
(intermediate): BertIntermediate(
|
446 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
447 |
+
(intermediate_act_fn): GELUActivation()
|
448 |
+
)
|
449 |
+
(output): BertOutput(
|
450 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
451 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
452 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
453 |
+
)
|
454 |
+
)
|
455 |
+
(17): BertLayer(
|
456 |
+
(attention): BertAttention(
|
457 |
+
(self): BertSelfAttention(
|
458 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
459 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
460 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
461 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
462 |
+
)
|
463 |
+
(output): BertSelfOutput(
|
464 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
465 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
466 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
467 |
+
)
|
468 |
+
)
|
469 |
+
(intermediate): BertIntermediate(
|
470 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
471 |
+
(intermediate_act_fn): GELUActivation()
|
472 |
+
)
|
473 |
+
(output): BertOutput(
|
474 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
475 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
476 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
477 |
+
)
|
478 |
+
)
|
479 |
+
(18): BertLayer(
|
480 |
+
(attention): BertAttention(
|
481 |
+
(self): BertSelfAttention(
|
482 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
483 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
484 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
486 |
+
)
|
487 |
+
(output): BertSelfOutput(
|
488 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
489 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
490 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
491 |
+
)
|
492 |
+
)
|
493 |
+
(intermediate): BertIntermediate(
|
494 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
495 |
+
(intermediate_act_fn): GELUActivation()
|
496 |
+
)
|
497 |
+
(output): BertOutput(
|
498 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
499 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
500 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
501 |
+
)
|
502 |
+
)
|
503 |
+
(19): BertLayer(
|
504 |
+
(attention): BertAttention(
|
505 |
+
(self): BertSelfAttention(
|
506 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
507 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
508 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
509 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
510 |
+
)
|
511 |
+
(output): BertSelfOutput(
|
512 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
513 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
514 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(intermediate): BertIntermediate(
|
518 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
519 |
+
(intermediate_act_fn): GELUActivation()
|
520 |
+
)
|
521 |
+
(output): BertOutput(
|
522 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
523 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
525 |
+
)
|
526 |
+
)
|
527 |
+
(20): BertLayer(
|
528 |
+
(attention): BertAttention(
|
529 |
+
(self): BertSelfAttention(
|
530 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
531 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
532 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
533 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
534 |
+
)
|
535 |
+
(output): BertSelfOutput(
|
536 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
537 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
538 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
539 |
+
)
|
540 |
+
)
|
541 |
+
(intermediate): BertIntermediate(
|
542 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
543 |
+
(intermediate_act_fn): GELUActivation()
|
544 |
+
)
|
545 |
+
(output): BertOutput(
|
546 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
547 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
548 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
549 |
+
)
|
550 |
+
)
|
551 |
+
(21): BertLayer(
|
552 |
+
(attention): BertAttention(
|
553 |
+
(self): BertSelfAttention(
|
554 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
555 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
556 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
557 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
558 |
+
)
|
559 |
+
(output): BertSelfOutput(
|
560 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
561 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
562 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
563 |
+
)
|
564 |
+
)
|
565 |
+
(intermediate): BertIntermediate(
|
566 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
567 |
+
(intermediate_act_fn): GELUActivation()
|
568 |
+
)
|
569 |
+
(output): BertOutput(
|
570 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
571 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
572 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
573 |
+
)
|
574 |
+
)
|
575 |
+
(22): BertLayer(
|
576 |
+
(attention): BertAttention(
|
577 |
+
(self): BertSelfAttention(
|
578 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
579 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
580 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
581 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
582 |
+
)
|
583 |
+
(output): BertSelfOutput(
|
584 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
585 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
586 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(intermediate): BertIntermediate(
|
590 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
591 |
+
(intermediate_act_fn): GELUActivation()
|
592 |
+
)
|
593 |
+
(output): BertOutput(
|
594 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
595 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
596 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
597 |
+
)
|
598 |
+
)
|
599 |
+
(23): BertLayer(
|
600 |
+
(attention): BertAttention(
|
601 |
+
(self): BertSelfAttention(
|
602 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
603 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
604 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
605 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
606 |
+
)
|
607 |
+
(output): BertSelfOutput(
|
608 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
609 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
610 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
611 |
+
)
|
612 |
+
)
|
613 |
+
(intermediate): BertIntermediate(
|
614 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
615 |
+
(intermediate_act_fn): GELUActivation()
|
616 |
+
)
|
617 |
+
(output): BertOutput(
|
618 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
619 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
|
620 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
621 |
+
)
|
622 |
+
)
|
623 |
+
)
|
624 |
+
)
|
625 |
+
(pooler): BertPooler(
|
626 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
627 |
+
(activation): Tanh()
|
628 |
+
)
|
629 |
+
)
|
630 |
+
)
|
631 |
+
)
|
632 |
+
```
|
633 |
+
|
634 |
+
## Usage
|
635 |
+
|
636 |
+
### Direct Usage (Sentence Transformers)
|
637 |
+
|
638 |
+
First install the Sentence Transformers library:
|
639 |
+
|
640 |
+
```bash
|
641 |
+
pip install -U sentence-transformers
|
642 |
+
```
|
643 |
+
|
644 |
+
Then you can load this model and run inference.
|
645 |
+
```python
|
646 |
+
from sentence_transformers import SentenceTransformer
|
647 |
+
|
648 |
+
# Download from the 🤗 Hub
|
649 |
+
model = SentenceTransformer("Tomor0720/bge_large_en_v1.5_custom_pooling")
|
650 |
+
# Run inference
|
651 |
+
sentences = [
|
652 |
+
'The weather is lovely today.',
|
653 |
+
"It's so sunny outside!",
|
654 |
+
'He drove to the stadium.',
|
655 |
+
]
|
656 |
+
embeddings = model.encode(sentences)
|
657 |
+
print(embeddings.shape)
|
658 |
+
# [3, 1024]
|
659 |
+
|
660 |
+
# Get the similarity scores for the embeddings
|
661 |
+
similarities = model.similarity(embeddings, embeddings)
|
662 |
+
print(similarities.shape)
|
663 |
+
# [3, 3]
|
664 |
+
```
|
665 |
+
|
666 |
+
<!--
|
667 |
+
### Direct Usage (Transformers)
|
668 |
+
|
669 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
670 |
+
|
671 |
+
</details>
|
672 |
+
-->
|
673 |
+
|
674 |
+
<!--
|
675 |
+
### Downstream Usage (Sentence Transformers)
|
676 |
+
|
677 |
+
You can finetune this model on your own dataset.
|
678 |
+
|
679 |
+
<details><summary>Click to expand</summary>
|
680 |
+
|
681 |
+
</details>
|
682 |
+
-->
|
683 |
+
|
684 |
+
<!--
|
685 |
+
### Out-of-Scope Use
|
686 |
+
|
687 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
688 |
+
-->
|
689 |
+
|
690 |
+
<!--
|
691 |
+
## Bias, Risks and Limitations
|
692 |
+
|
693 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
694 |
+
-->
|
695 |
+
|
696 |
+
<!--
|
697 |
+
### Recommendations
|
698 |
+
|
699 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
700 |
+
-->
|
701 |
+
|
702 |
+
## Training Details
|
703 |
+
|
704 |
+
### Framework Versions
|
705 |
+
- Python: 3.9.18
|
706 |
+
- Sentence Transformers: 3.1.1
|
707 |
+
- Transformers: 4.45.1
|
708 |
+
- PyTorch: 1.13.0+cu117
|
709 |
+
- Accelerate: 0.20.3
|
710 |
+
- Datasets: 2.13.0
|
711 |
+
- Tokenizers: 0.20.0
|
712 |
+
|
713 |
+
## Citation
|
714 |
+
|
715 |
+
### BibTeX
|
716 |
+
|
717 |
+
<!--
|
718 |
+
## Glossary
|
719 |
+
|
720 |
+
*Clearly define terms in order to be accessible across audiences.*
|
721 |
+
-->
|
722 |
+
|
723 |
+
<!--
|
724 |
+
## Model Card Authors
|
725 |
+
|
726 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
727 |
+
-->
|
728 |
+
|
729 |
+
<!--
|
730 |
+
## Model Card Contact
|
731 |
+
|
732 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
733 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "BAAI/bge-large-en-v1.5",
|
3 |
+
"layers": [
|
4 |
+
0,
|
5 |
+
1,
|
6 |
+
2,
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
5,
|
10 |
+
6,
|
11 |
+
7,
|
12 |
+
8,
|
13 |
+
9,
|
14 |
+
10,
|
15 |
+
11,
|
16 |
+
12,
|
17 |
+
13,
|
18 |
+
14,
|
19 |
+
15,
|
20 |
+
16,
|
21 |
+
17,
|
22 |
+
18,
|
23 |
+
19,
|
24 |
+
20,
|
25 |
+
21,
|
26 |
+
22,
|
27 |
+
23
|
28 |
+
],
|
29 |
+
"max_seq_len": 512
|
30 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "__main__.ConcatCustomPooling"
|
7 |
+
}
|
8 |
+
]
|