File size: 1,767 Bytes
57d4ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
library_name: peft
license: apache-2.0
tags:
- adapter
- instruct-tuning
- Mistral7B
- Batch_Size-4
- Steps-50
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: PerspectrumInstruct-Baseline-Batch_4-Step_50-FT-Unsloth_Mistral7B
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# PerspectrumInstruct-Baseline-Batch_4-Step_50-FT-Unsloth_Mistral7B

This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1440

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6259        | 0.0719 | 20   | 1.2161          |
| 1.148         | 0.1438 | 40   | 1.1440          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1