|
--- |
|
base_model: |
|
- ifable/gemma-2-Ifable-9B |
|
--- |
|
Created with: |
|
``` |
|
from transformers import AutoModelForCausalLM |
|
import torch |
|
|
|
# 加载模型并解除共享 |
|
model = AutoModelForCausalLM.from_pretrained("ifable/gemma-2-Ifable-9B", tie_word_embeddings=False) |
|
|
|
# 解除共享的 lm_head 和 embed_tokens 权重 |
|
model.lm_head.weight.data = model.model.embed_tokens.weight.data.clone() |
|
|
|
# 将模型转换为 bf16 格式 |
|
model = model.to(dtype=torch.bfloat16) |
|
|
|
# 指定保存路径 |
|
untied_model_dir = "mergekit/output" |
|
|
|
# 保存解除共享且为 bf16 格式的模型 |
|
model.save_pretrained(untied_model_dir) |
|
model.config.save_pretrained(untied_model_dir) |
|
``` |
|
I didn't copy tokenizer from the original model, do it yourself if you want. |