--- tags: - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 --- # TODO: Fill this model card This is a pre-trained model of agent playing Asteroids-v0 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. ### Usage (with Stable-baselines3) Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: ``` pip install stable-baselines3 pip install huggingface_sb3 ``` Then, you can use the model like this: ```python import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="TrabajoAprendizajeProfundo/Trabajo", filename="Asteroids-v0.zip") model = PPO.load(checkpoint) # Evaluate the agent eval_env = gym.make('Asteroids-v0') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play directory = './video' env = Recorder(env, directory) obs = env.reset() done = False while not done: action, _state = model2.predict(obs) obs, reward, done, info = env.step(action) env.play() ``` ### Evaluation Results mean_reward, std_reward = evaluate_policy(model2, eval_env, n_eval_episodes=10) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")