HHansi commited on
Commit
9fae6d2
1 Parent(s): 3760946

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<e>": 250002, "</e>": 250003}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250004
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.8098918083462133
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.8681 0.7390 0.7984 659
5
+ 1.0 0.7653 0.8835 0.8202 635
6
+
7
+ accuracy 0.8099 1294
8
+ macro avg 0.8167 0.8112 0.8093 1294
9
+ weighted avg 0.8177 0.8099 0.8091 1294
10
+
11
+ eval_loss = 0.4218950744856287
12
+ fn = 74
13
+ fp = 172
14
+ macro_f1 = 0.8092680471670981
15
+ mcc = 0.6279278248637312
16
+ tn = 487
17
+ tp = 561
18
+ weighted_f1 = 0.8090657462441418
19
+ weighted_p = 0.8167202885122795
20
+ weighted_r = 0.8112315247392254
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_B_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "B", "special_tags": ["<e>"], "merge_n": 2, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3d4fc4d9c968f0f46a84d8203a5f2b3338503ec8f474f4b20f26338a4b48229
3
+ size 4504578173
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c51e75c4ba4c659e5d4d4ef6266cca78f37d54a3d903b4c3fda834e87aea797
3
+ size 2256539453
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ab8788b213fb084fa6fa6254d25a5b259394eb5b089dec6c371838839383bd4
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8753 0.6740 0.7616 500
5
+ T 0.7350 0.9040 0.8108 500
6
+
7
+ accuracy 0.7890 1000
8
+ macro avg 0.8051 0.7890 0.7862 1000
9
+ weighted avg 0.8051 0.7890 0.7862 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7142857142857143
14
+ Weighted Recall = 0.7142857142857143
15
+ Weighted Precision = 0.7466928286600417
16
+ Weighted F1 = 0.7104522312069482
17
+ Macro Recall = 0.7257861635220126
18
+ Macro Precision = 0.7385910500664599
19
+ Macro F1 = 0.7123689727463313
20
+ ADV
21
+ Accuracy = 0.8
22
+ Weighted Recall = 0.8
23
+ Weighted Precision = 0.8
24
+ Weighted F1 = 0.8
25
+ Macro Recall = 0.6875
26
+ Macro Precision = 0.6875
27
+ Macro F1 = 0.6875
28
+ NOUN
29
+ Accuracy = 0.7975708502024291
30
+ Weighted Recall = 0.7975708502024291
31
+ Weighted Precision = 0.8157128174844275
32
+ Weighted F1 = 0.7942263098436241
33
+ Macro Recall = 0.7960655737704918
34
+ Macro Precision = 0.8166199158485273
35
+ Macro F1 = 0.7938918558077436
36
+ VERB
37
+ Accuracy = 0.7964824120603015
38
+ Weighted Recall = 0.7964824120603015
39
+ Weighted Precision = 0.8086927102556094
40
+ Weighted F1 = 0.7947149907919534
41
+ Macro Recall = 0.7974467762709296
42
+ Macro Precision = 0.8080665411173886
43
+ Macro F1 = 0.7948962647681943
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8982 0.8820 0.8900 500
5
+ T 0.8841 0.9000 0.8920 500
6
+
7
+ accuracy 0.8910 1000
8
+ macro avg 0.8911 0.8910 0.8910 1000
9
+ weighted avg 0.8911 0.8910 0.8910 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.875
14
+ Weighted Recall = 0.875
15
+ Weighted Precision = 0.8750971250971252
16
+ Weighted F1 = 0.8748788524907928
17
+ Macro Recall = 0.8738390092879257
18
+ Macro Precision = 0.8752913752913754
19
+ Macro F1 = 0.8743942624539639
20
+ ADV
21
+ Accuracy = 0.7333333333333333
22
+ Weighted Recall = 0.7333333333333333
23
+ Weighted Precision = 0.7642857142857142
24
+ Weighted F1 = 0.7357142857142857
25
+ Macro Recall = 0.75
26
+ Macro Precision = 0.7410714285714286
27
+ Macro F1 = 0.7321428571428572
28
+ NOUN
29
+ Accuracy = 0.9034090909090909
30
+ Weighted Recall = 0.9034090909090909
31
+ Weighted Precision = 0.9035607582715792
32
+ Weighted F1 = 0.903403893658131
33
+ Macro Recall = 0.9034435755793099
34
+ Macro Precision = 0.9035304247990815
35
+ Macro F1 = 0.9034059725585148
36
+ VERB
37
+ Accuracy = 0.8926174496644296
38
+ Weighted Recall = 0.8926174496644296
39
+ Weighted Precision = 0.8926882011082579
40
+ Weighted F1 = 0.8926126126126126
41
+ Macro Recall = 0.8926174496644296
42
+ Macro Precision = 0.8926882011082579
43
+ Macro F1 = 0.8926126126126126
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8444 0.7600 0.8000 500
5
+ T 0.7818 0.8600 0.8190 500
6
+
7
+ accuracy 0.8100 1000
8
+ macro avg 0.8131 0.8100 0.8095 1000
9
+ weighted avg 0.8131 0.8100 0.8095 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.8043478260869565
14
+ Weighted Recall = 0.8043478260869565
15
+ Weighted Precision = 0.8043953202425369
16
+ Weighted F1 = 0.8035012541806019
17
+ Macro Recall = 0.7992365501610401
18
+ Macro Precision = 0.8044665614759072
19
+ Macro F1 = 0.8009615384615384
20
+ ADV
21
+ Accuracy = 0.8333333333333334
22
+ Weighted Recall = 0.8333333333333334
23
+ Weighted Precision = 0.8333333333333334
24
+ Weighted F1 = 0.8222222222222223
25
+ Macro Recall = 0.753968253968254
26
+ Macro Precision = 0.8333333333333334
27
+ Macro F1 = 0.7777777777777779
28
+ NOUN
29
+ Accuracy = 0.7879377431906615
30
+ Weighted Recall = 0.7879377431906615
31
+ Weighted Precision = 0.7957059477487493
32
+ Weighted F1 = 0.7861599854767033
33
+ Macro Recall = 0.7865839807369043
34
+ Macro Precision = 0.7964285714285715
35
+ Macro F1 = 0.7858292398555018
36
+ VERB
37
+ Accuracy = 0.8529411764705882
38
+ Weighted Recall = 0.8529411764705882
39
+ Weighted Precision = 0.8527098571358757
40
+ Weighted F1 = 0.8527786446143445
41
+ Macro Recall = 0.8489660876757651
42
+ Macro Precision = 0.8505123234561063
43
+ Macro F1 = 0.8496905393457118
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7495 0.7300 0.7396 500
5
+ T 0.7368 0.7560 0.7463 500
6
+
7
+ accuracy 0.7430 1000
8
+ macro avg 0.7432 0.7430 0.7430 1000
9
+ weighted avg 0.7432 0.7430 0.7430 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7333333333333333
14
+ Weighted Recall = 0.7333333333333333
15
+ Weighted Precision = 0.768888888888889
16
+ Weighted F1 = 0.7381598793363501
17
+ Macro Recall = 0.7511961722488039
18
+ Macro Precision = 0.7333333333333334
19
+ Macro F1 = 0.7285067873303168
20
+ ADV
21
+ Accuracy = 0.4375
22
+ Weighted Recall = 0.4375
23
+ Weighted Precision = 0.5113636363636364
24
+ Weighted F1 = 0.42647058823529416
25
+ Macro Recall = 0.4833333333333333
26
+ Macro Precision = 0.4818181818181818
27
+ Macro F1 = 0.43529411764705883
28
+ NOUN
29
+ Accuracy = 0.7422680412371134
30
+ Weighted Recall = 0.7422680412371134
31
+ Weighted Precision = 0.7436894055713972
32
+ Weighted F1 = 0.7422680412371133
33
+ Macro Recall = 0.7429787234042553
34
+ Macro Precision = 0.7429787234042553
35
+ Macro F1 = 0.7422680412371133
36
+ VERB
37
+ Accuracy = 0.7580645161290323
38
+ Weighted Recall = 0.7580645161290323
39
+ Weighted Precision = 0.7580999984126346
40
+ Weighted F1 = 0.7579945339231744
41
+ Macro Recall = 0.7578280856969382
42
+ Macro Precision = 0.7581266101253366
43
+ Macro F1 = 0.7578895606143877
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6162 0.5940 0.6049 500
5
+ T 0.6081 0.6300 0.6189 500
6
+
7
+ accuracy 0.6120 1000
8
+ macro avg 0.6121 0.6120 0.6119 1000
9
+ weighted avg 0.6121 0.6120 0.6119 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.6290322580645161
14
+ Weighted Recall = 0.6290322580645161
15
+ Weighted Precision = 0.6545265348595213
16
+ Weighted F1 = 0.633822091886608
17
+ Macro Recall = 0.6359649122807017
18
+ Macro Precision = 0.6290322580645161
19
+ Macro F1 = 0.6242424242424243
20
+ ADV
21
+ Accuracy = 0.55
22
+ Weighted Recall = 0.55
23
+ Weighted Precision = 0.7656565656565656
24
+ Weighted F1 = 0.592
25
+ Macro Recall = 0.625
26
+ Macro Precision = 0.5808080808080808
27
+ Macro F1 = 0.52
28
+ NOUN
29
+ Accuracy = 0.6299638989169675
30
+ Weighted Recall = 0.6299638989169675
31
+ Weighted Precision = 0.6346261039933063
32
+ Weighted F1 = 0.6284563108485184
33
+ Macro Recall = 0.6316901408450704
34
+ Macro Precision = 0.6338671403762279
35
+ Macro F1 = 0.6289471534754554
36
+ VERB
37
+ Accuracy = 0.5851648351648352
38
+ Weighted Recall = 0.5851648351648352
39
+ Weighted Precision = 0.5846448359011174
40
+ Weighted F1 = 0.5843695356073451
41
+ Macro Recall = 0.5837161508704062
42
+ Macro Precision = 0.5843611999390894
43
+ Macro F1 = 0.583501936090083
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a5b6d5983c19f11c00b7dad52d2d3a7e194646ecaef9aedf843dfa160ce9077
3
+ size 2811