HHansi commited on
Commit
0f145ef
1 Parent(s): 2a1b055

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<e>": 250002, "</e>": 250003}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250004
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.8153013910355487
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.8454 0.7800 0.8114 659
5
+ 1.0 0.7886 0.8520 0.8191 635
6
+
7
+ accuracy 0.8153 1294
8
+ macro avg 0.8170 0.8160 0.8152 1294
9
+ weighted avg 0.8175 0.8153 0.8151 1294
10
+
11
+ eval_loss = 0.44760561182543085
12
+ fn = 94
13
+ fp = 145
14
+ macro_f1 = 0.815220943689666
15
+ mcc = 0.6329804551177601
16
+ tn = 514
17
+ tp = 541
18
+ weighted_f1 = 0.8151494349377705
19
+ weighted_p = 0.8170122372257174
20
+ weighted_r = 0.8159690774616755
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_BT_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "BT", "special_tags": ["<e>"], "merge_n": 2, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:253d0b0a262f7f2792718e2371ddf56874a39f4959bf8fde04ecd9ce53e6a713
3
+ size 4504578173
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14c1b6487921ae5aa38009f546fbfe7673522e322a3df56cdb5419cf172791f6
3
+ size 2256539453
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32ea4ca977f31a40cf77bd371a13f753ce0aaba08ec608fa34384e28eb80cf1a
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8750 0.6720 0.7602 500
5
+ T 0.7338 0.9040 0.8100 500
6
+
7
+ accuracy 0.7880 1000
8
+ macro avg 0.8044 0.7880 0.7851 1000
9
+ weighted avg 0.8044 0.7880 0.7851 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7755102040816326
14
+ Weighted Recall = 0.7755102040816326
15
+ Weighted Precision = 0.8044417245385769
16
+ Weighted F1 = 0.7735393488499079
17
+ Macro Recall = 0.7857442348008385
18
+ Macro Precision = 0.7961755758365928
19
+ Macro F1 = 0.774665551839465
20
+ ADV
21
+ Accuracy = 0.8
22
+ Weighted Recall = 0.8
23
+ Weighted Precision = 0.64
24
+ Weighted F1 = 0.7111111111111111
25
+ Macro Recall = 0.5
26
+ Macro Precision = 0.4
27
+ Macro F1 = 0.4444444444444445
28
+ NOUN
29
+ Accuracy = 0.791497975708502
30
+ Weighted Recall = 0.791497975708502
31
+ Weighted Precision = 0.8020009793987886
32
+ Weighted F1 = 0.7893449060168418
33
+ Macro Recall = 0.7903114754098362
34
+ Macro Precision = 0.802671383889658
35
+ Macro F1 = 0.7890700460562043
36
+ VERB
37
+ Accuracy = 0.7864321608040201
38
+ Weighted Recall = 0.7864321608040201
39
+ Weighted Precision = 0.8087896237946488
40
+ Weighted F1 = 0.7828768722621846
41
+ Macro Recall = 0.7877490718993863
42
+ Macro Precision = 0.8079459459459459
43
+ Macro F1 = 0.7831451959257194
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.9076 0.8840 0.8956 500
5
+ T 0.8869 0.9100 0.8983 500
6
+
7
+ accuracy 0.8970 1000
8
+ macro avg 0.8973 0.8970 0.8970 1000
9
+ weighted avg 0.8973 0.8970 0.8970 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.875
14
+ Weighted Recall = 0.875
15
+ Weighted Precision = 0.878968253968254
16
+ Weighted F1 = 0.87421875
17
+ Macro Recall = 0.8715170278637772
18
+ Macro Precision = 0.8809523809523809
19
+ Macro F1 = 0.8734375000000001
20
+ ADV
21
+ Accuracy = 0.7333333333333333
22
+ Weighted Recall = 0.7333333333333333
23
+ Weighted Precision = 0.7944444444444445
24
+ Weighted F1 = 0.7333333333333333
25
+ Macro Recall = 0.7638888888888888
26
+ Macro Precision = 0.7638888888888888
27
+ Macro F1 = 0.7333333333333334
28
+ NOUN
29
+ Accuracy = 0.9071969696969697
30
+ Weighted Recall = 0.9071969696969697
31
+ Weighted Precision = 0.9072041437098255
32
+ Weighted F1 = 0.90719730258323
33
+ Macro Recall = 0.9072028122533897
34
+ Macro Precision = 0.9071969696969697
35
+ Macro F1 = 0.9071966368107094
36
+ VERB
37
+ Accuracy = 0.9060402684563759
38
+ Weighted Recall = 0.9060402684563759
39
+ Weighted Precision = 0.9061134387529846
40
+ Weighted F1 = 0.9060360360360362
41
+ Macro Recall = 0.9060402684563759
42
+ Macro Precision = 0.9061134387529847
43
+ Macro F1 = 0.9060360360360361
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8362 0.7660 0.7996 500
5
+ T 0.7841 0.8500 0.8157 500
6
+
7
+ accuracy 0.8080 1000
8
+ macro avg 0.8102 0.8080 0.8077 1000
9
+ weighted avg 0.8102 0.8080 0.8077 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7771739130434783
14
+ Weighted Recall = 0.7771739130434783
15
+ Weighted Precision = 0.776750627090301
16
+ Weighted F1 = 0.7767538010136036
17
+ Macro Recall = 0.7734104735774783
18
+ Macro Precision = 0.7754807692307693
19
+ Macro F1 = 0.7742331288343558
20
+ ADV
21
+ Accuracy = 0.8666666666666667
22
+ Weighted Recall = 0.8666666666666667
23
+ Weighted Precision = 0.8658385093167702
24
+ Weighted F1 = 0.8613636363636362
25
+ Macro Recall = 0.8095238095238095
26
+ Macro Precision = 0.8633540372670807
27
+ Macro F1 = 0.8295454545454545
28
+ NOUN
29
+ Accuracy = 0.7859922178988327
30
+ Weighted Recall = 0.7859922178988327
31
+ Weighted Precision = 0.7912650505847443
32
+ Weighted F1 = 0.7846996520220378
33
+ Macro Recall = 0.7848499992428029
34
+ Macro Precision = 0.791850920883179
35
+ Macro F1 = 0.7844124151605278
36
+ VERB
37
+ Accuracy = 0.8639705882352942
38
+ Weighted Recall = 0.8639705882352942
39
+ Weighted Precision = 0.8641328449715788
40
+ Weighted F1 = 0.8640399001988731
41
+ Macro Recall = 0.861786600496278
42
+ Macro Precision = 0.8610499669821703
43
+ Macro F1 = 0.8614060455828685
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7639 0.7120 0.7371 500
5
+ T 0.7303 0.7800 0.7544 500
6
+
7
+ accuracy 0.7460 1000
8
+ macro avg 0.7471 0.7460 0.7457 1000
9
+ weighted avg 0.7471 0.7460 0.7457 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7333333333333333
14
+ Weighted Recall = 0.7333333333333333
15
+ Weighted Precision = 0.7472096530920059
16
+ Weighted F1 = 0.7370370370370372
17
+ Macro Recall = 0.7320574162679425
18
+ Macro Precision = 0.7194570135746606
19
+ Macro F1 = 0.7222222222222223
20
+ ADV
21
+ Accuracy = 0.5
22
+ Weighted Recall = 0.5
23
+ Weighted Precision = 0.5666666666666667
24
+ Weighted F1 = 0.5
25
+ Macro Recall = 0.5333333333333333
26
+ Macro Precision = 0.5333333333333333
27
+ Macro F1 = 0.5
28
+ NOUN
29
+ Accuracy = 0.7422680412371134
30
+ Weighted Recall = 0.7422680412371134
31
+ Weighted Precision = 0.7442593402217998
32
+ Weighted F1 = 0.7422010796880176
33
+ Macro Recall = 0.7431914893617022
34
+ Macro Precision = 0.7434447179098826
35
+ Macro F1 = 0.7422558664100051
36
+ VERB
37
+ Accuracy = 0.7634408602150538
38
+ Weighted Recall = 0.7634408602150538
39
+ Weighted Precision = 0.7655658974032046
40
+ Weighted F1 = 0.7626992955135335
41
+ Macro Recall = 0.7625986642380085
42
+ Macro Precision = 0.7659200702678963
43
+ Macro F1 = 0.7624521072796935
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6066 0.6600 0.6322 500
5
+ T 0.6272 0.5720 0.5983 500
6
+
7
+ accuracy 0.6160 1000
8
+ macro avg 0.6169 0.6160 0.6153 1000
9
+ weighted avg 0.6169 0.6160 0.6153 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.5967741935483871
14
+ Weighted Recall = 0.5967741935483871
15
+ Weighted Precision = 0.6420208226659839
16
+ Weighted F1 = 0.6002439332127687
17
+ Macro Recall = 0.6173245614035088
18
+ Macro Precision = 0.6132275132275132
19
+ Macro F1 = 0.5958279009126466
20
+ ADV
21
+ Accuracy = 0.45
22
+ Weighted Recall = 0.45
23
+ Weighted Precision = 0.7318681318681318
24
+ Weighted F1 = 0.4879795396419436
25
+ Macro Recall = 0.5625
26
+ Macro Precision = 0.5439560439560439
27
+ Macro F1 = 0.43734015345268534
28
+ NOUN
29
+ Accuracy = 0.6371841155234657
30
+ Weighted Recall = 0.6371841155234657
31
+ Weighted Precision = 0.6376268566649375
32
+ Weighted F1 = 0.6372373158936345
33
+ Macro Recall = 0.6373630672926448
34
+ Macro Precision = 0.6372825024437927
35
+ Macro F1 = 0.637154559762261
36
+ VERB
37
+ Accuracy = 0.5961538461538461
38
+ Weighted Recall = 0.5961538461538461
39
+ Weighted Precision = 0.5969369996519317
40
+ Weighted F1 = 0.5915573339905185
41
+ Macro Recall = 0.5927224371373307
42
+ Macro Precision = 0.5970793911970382
43
+ Macro F1 = 0.5898858750220356
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ef834aafe7b53c79fba3e94f547d50608db20bc867e2b3bf0385f4a1eb19839
3
+ size 2811