Upload folder using huggingface_hub
Browse files- added_tokens.json +1 -0
- config.json +28 -0
- eval_results.txt +20 -0
- model_args.json +1 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- test_eval_ar.txt +43 -0
- test_eval_en.txt +43 -0
- test_eval_fr.txt +43 -0
- test_eval_ru.txt +43 -0
- test_eval_zh.txt +43 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<e>": 250002, "</e>": 250003}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.16.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250004
|
28 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accuracy = 0.8153013910355487
|
2 |
+
cls_report = precision recall f1-score support
|
3 |
+
|
4 |
+
0.0 0.8454 0.7800 0.8114 659
|
5 |
+
1.0 0.7886 0.8520 0.8191 635
|
6 |
+
|
7 |
+
accuracy 0.8153 1294
|
8 |
+
macro avg 0.8170 0.8160 0.8152 1294
|
9 |
+
weighted avg 0.8175 0.8153 0.8151 1294
|
10 |
+
|
11 |
+
eval_loss = 0.44760561182543085
|
12 |
+
fn = 94
|
13 |
+
fp = 145
|
14 |
+
macro_f1 = 0.815220943689666
|
15 |
+
mcc = 0.6329804551177601
|
16 |
+
tn = 514
|
17 |
+
tp = 541
|
18 |
+
weighted_f1 = 0.8151494349377705
|
19 |
+
weighted_p = 0.8170122372257174
|
20 |
+
weighted_r = 0.8159690774616755
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_BT_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "BT", "special_tags": ["<e>"], "merge_n": 2, "merge_type": "concat"}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:253d0b0a262f7f2792718e2371ddf56874a39f4959bf8fde04ecd9ce53e6a713
|
3 |
+
size 4504578173
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14c1b6487921ae5aa38009f546fbfe7673522e322a3df56cdb5419cf172791f6
|
3 |
+
size 2256539453
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32ea4ca977f31a40cf77bd371a13f753ce0aaba08ec608fa34384e28eb80cf1a
|
3 |
+
size 627
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
test_eval_ar.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8750 0.6720 0.7602 500
|
5 |
+
T 0.7338 0.9040 0.8100 500
|
6 |
+
|
7 |
+
accuracy 0.7880 1000
|
8 |
+
macro avg 0.8044 0.7880 0.7851 1000
|
9 |
+
weighted avg 0.8044 0.7880 0.7851 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7755102040816326
|
14 |
+
Weighted Recall = 0.7755102040816326
|
15 |
+
Weighted Precision = 0.8044417245385769
|
16 |
+
Weighted F1 = 0.7735393488499079
|
17 |
+
Macro Recall = 0.7857442348008385
|
18 |
+
Macro Precision = 0.7961755758365928
|
19 |
+
Macro F1 = 0.774665551839465
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.8
|
22 |
+
Weighted Recall = 0.8
|
23 |
+
Weighted Precision = 0.64
|
24 |
+
Weighted F1 = 0.7111111111111111
|
25 |
+
Macro Recall = 0.5
|
26 |
+
Macro Precision = 0.4
|
27 |
+
Macro F1 = 0.4444444444444445
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.791497975708502
|
30 |
+
Weighted Recall = 0.791497975708502
|
31 |
+
Weighted Precision = 0.8020009793987886
|
32 |
+
Weighted F1 = 0.7893449060168418
|
33 |
+
Macro Recall = 0.7903114754098362
|
34 |
+
Macro Precision = 0.802671383889658
|
35 |
+
Macro F1 = 0.7890700460562043
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7864321608040201
|
38 |
+
Weighted Recall = 0.7864321608040201
|
39 |
+
Weighted Precision = 0.8087896237946488
|
40 |
+
Weighted F1 = 0.7828768722621846
|
41 |
+
Macro Recall = 0.7877490718993863
|
42 |
+
Macro Precision = 0.8079459459459459
|
43 |
+
Macro F1 = 0.7831451959257194
|
test_eval_en.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.9076 0.8840 0.8956 500
|
5 |
+
T 0.8869 0.9100 0.8983 500
|
6 |
+
|
7 |
+
accuracy 0.8970 1000
|
8 |
+
macro avg 0.8973 0.8970 0.8970 1000
|
9 |
+
weighted avg 0.8973 0.8970 0.8970 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.875
|
14 |
+
Weighted Recall = 0.875
|
15 |
+
Weighted Precision = 0.878968253968254
|
16 |
+
Weighted F1 = 0.87421875
|
17 |
+
Macro Recall = 0.8715170278637772
|
18 |
+
Macro Precision = 0.8809523809523809
|
19 |
+
Macro F1 = 0.8734375000000001
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.7333333333333333
|
22 |
+
Weighted Recall = 0.7333333333333333
|
23 |
+
Weighted Precision = 0.7944444444444445
|
24 |
+
Weighted F1 = 0.7333333333333333
|
25 |
+
Macro Recall = 0.7638888888888888
|
26 |
+
Macro Precision = 0.7638888888888888
|
27 |
+
Macro F1 = 0.7333333333333334
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.9071969696969697
|
30 |
+
Weighted Recall = 0.9071969696969697
|
31 |
+
Weighted Precision = 0.9072041437098255
|
32 |
+
Weighted F1 = 0.90719730258323
|
33 |
+
Macro Recall = 0.9072028122533897
|
34 |
+
Macro Precision = 0.9071969696969697
|
35 |
+
Macro F1 = 0.9071966368107094
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.9060402684563759
|
38 |
+
Weighted Recall = 0.9060402684563759
|
39 |
+
Weighted Precision = 0.9061134387529846
|
40 |
+
Weighted F1 = 0.9060360360360362
|
41 |
+
Macro Recall = 0.9060402684563759
|
42 |
+
Macro Precision = 0.9061134387529847
|
43 |
+
Macro F1 = 0.9060360360360361
|
test_eval_fr.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8362 0.7660 0.7996 500
|
5 |
+
T 0.7841 0.8500 0.8157 500
|
6 |
+
|
7 |
+
accuracy 0.8080 1000
|
8 |
+
macro avg 0.8102 0.8080 0.8077 1000
|
9 |
+
weighted avg 0.8102 0.8080 0.8077 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7771739130434783
|
14 |
+
Weighted Recall = 0.7771739130434783
|
15 |
+
Weighted Precision = 0.776750627090301
|
16 |
+
Weighted F1 = 0.7767538010136036
|
17 |
+
Macro Recall = 0.7734104735774783
|
18 |
+
Macro Precision = 0.7754807692307693
|
19 |
+
Macro F1 = 0.7742331288343558
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.8666666666666667
|
22 |
+
Weighted Recall = 0.8666666666666667
|
23 |
+
Weighted Precision = 0.8658385093167702
|
24 |
+
Weighted F1 = 0.8613636363636362
|
25 |
+
Macro Recall = 0.8095238095238095
|
26 |
+
Macro Precision = 0.8633540372670807
|
27 |
+
Macro F1 = 0.8295454545454545
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7859922178988327
|
30 |
+
Weighted Recall = 0.7859922178988327
|
31 |
+
Weighted Precision = 0.7912650505847443
|
32 |
+
Weighted F1 = 0.7846996520220378
|
33 |
+
Macro Recall = 0.7848499992428029
|
34 |
+
Macro Precision = 0.791850920883179
|
35 |
+
Macro F1 = 0.7844124151605278
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8639705882352942
|
38 |
+
Weighted Recall = 0.8639705882352942
|
39 |
+
Weighted Precision = 0.8641328449715788
|
40 |
+
Weighted F1 = 0.8640399001988731
|
41 |
+
Macro Recall = 0.861786600496278
|
42 |
+
Macro Precision = 0.8610499669821703
|
43 |
+
Macro F1 = 0.8614060455828685
|
test_eval_ru.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.7639 0.7120 0.7371 500
|
5 |
+
T 0.7303 0.7800 0.7544 500
|
6 |
+
|
7 |
+
accuracy 0.7460 1000
|
8 |
+
macro avg 0.7471 0.7460 0.7457 1000
|
9 |
+
weighted avg 0.7471 0.7460 0.7457 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7333333333333333
|
14 |
+
Weighted Recall = 0.7333333333333333
|
15 |
+
Weighted Precision = 0.7472096530920059
|
16 |
+
Weighted F1 = 0.7370370370370372
|
17 |
+
Macro Recall = 0.7320574162679425
|
18 |
+
Macro Precision = 0.7194570135746606
|
19 |
+
Macro F1 = 0.7222222222222223
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.5
|
22 |
+
Weighted Recall = 0.5
|
23 |
+
Weighted Precision = 0.5666666666666667
|
24 |
+
Weighted F1 = 0.5
|
25 |
+
Macro Recall = 0.5333333333333333
|
26 |
+
Macro Precision = 0.5333333333333333
|
27 |
+
Macro F1 = 0.5
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7422680412371134
|
30 |
+
Weighted Recall = 0.7422680412371134
|
31 |
+
Weighted Precision = 0.7442593402217998
|
32 |
+
Weighted F1 = 0.7422010796880176
|
33 |
+
Macro Recall = 0.7431914893617022
|
34 |
+
Macro Precision = 0.7434447179098826
|
35 |
+
Macro F1 = 0.7422558664100051
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7634408602150538
|
38 |
+
Weighted Recall = 0.7634408602150538
|
39 |
+
Weighted Precision = 0.7655658974032046
|
40 |
+
Weighted F1 = 0.7626992955135335
|
41 |
+
Macro Recall = 0.7625986642380085
|
42 |
+
Macro Precision = 0.7659200702678963
|
43 |
+
Macro F1 = 0.7624521072796935
|
test_eval_zh.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.6066 0.6600 0.6322 500
|
5 |
+
T 0.6272 0.5720 0.5983 500
|
6 |
+
|
7 |
+
accuracy 0.6160 1000
|
8 |
+
macro avg 0.6169 0.6160 0.6153 1000
|
9 |
+
weighted avg 0.6169 0.6160 0.6153 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.5967741935483871
|
14 |
+
Weighted Recall = 0.5967741935483871
|
15 |
+
Weighted Precision = 0.6420208226659839
|
16 |
+
Weighted F1 = 0.6002439332127687
|
17 |
+
Macro Recall = 0.6173245614035088
|
18 |
+
Macro Precision = 0.6132275132275132
|
19 |
+
Macro F1 = 0.5958279009126466
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.45
|
22 |
+
Weighted Recall = 0.45
|
23 |
+
Weighted Precision = 0.7318681318681318
|
24 |
+
Weighted F1 = 0.4879795396419436
|
25 |
+
Macro Recall = 0.5625
|
26 |
+
Macro Precision = 0.5439560439560439
|
27 |
+
Macro F1 = 0.43734015345268534
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.6371841155234657
|
30 |
+
Weighted Recall = 0.6371841155234657
|
31 |
+
Weighted Precision = 0.6376268566649375
|
32 |
+
Weighted F1 = 0.6372373158936345
|
33 |
+
Macro Recall = 0.6373630672926448
|
34 |
+
Macro Precision = 0.6372825024437927
|
35 |
+
Macro F1 = 0.637154559762261
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.5961538461538461
|
38 |
+
Weighted Recall = 0.5961538461538461
|
39 |
+
Weighted Precision = 0.5969369996519317
|
40 |
+
Weighted F1 = 0.5915573339905185
|
41 |
+
Macro Recall = 0.5927224371373307
|
42 |
+
Macro Precision = 0.5970793911970382
|
43 |
+
Macro F1 = 0.5898858750220356
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ef834aafe7b53c79fba3e94f547d50608db20bc867e2b3bf0385f4a1eb19839
|
3 |
+
size 2811
|