Rastapar commited on
Commit
c7bc841
1 Parent(s): 4cc4962

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -1
README.md CHANGED
@@ -6,4 +6,24 @@ base_model:
6
  - meta-llama/Meta-Llama-3.1-8B
7
  ---
8
 
9
- # TODO documentation about the model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - meta-llama/Meta-Llama-3.1-8B
7
  ---
8
 
9
+ # Empathetic teacher model
10
+
11
+ ## Overview
12
+
13
+ This is a LLM fine-tuned with real-life, ideally-empathetic teacher-student conversations.
14
+ This model processes the recent conversation history and provides guidance on how a teacher might respond to the student's utterance.
15
+
16
+ To fine-tune an open-weighted LLM to act as this generic teacher, we are using the following datasets:
17
+ the Teacher-Student Chatroom Corpus,
18
+ TSCCv2 [Caines et al., 2022](https://aclanthology.org/2022.nlp4call-1.3),
19
+ CIMA [Stasaski et al., 2020](https://aclanthology.org/2020.bea-1.5),
20
+ the Multicultural Classroom Discourse Dataset [Rapanta et al., 2021](https://www.sciencedirect.com/science/article/pii/S2352340921007940),
21
+ MathDial [Macina et al., 2023](https://aclanthology.org/2023.findings-emnlp.372), and
22
+ Conversational Uptake [Demszky et al., 2021].
23
+
24
+ We are evaluating LLaMa-3, Phi-3, and Gemma-2 for this task.
25
+ Instead of using programmable fine-tuning libraries such as Axolotl ([link](https://github.com/OpenAccess-AI-Collective/axolotl))
26
+ or Huggingface TRL ([link](https://github.com/huggingface/trl)),
27
+ we are employing the more general command-line LLaMA-Factory ([link](https://github.com/hiyouga/LLaMA-Factory)) toolkit
28
+ that facilitates the fine-tuning of various well-known LLMs on custom data.
29
+ Parameter-efficient fine-tuning is achieved via the QLoRA method [Dettmers et al., 2023](https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf).