RonanMcGovern commited on
Commit
5cff35b
1 Parent(s): dce14eb

add GPTQ-trained

Browse files
Files changed (1) hide show
  1. README.md +48 -23
README.md CHANGED
@@ -21,12 +21,38 @@ tags:
21
  - The model responds with a structured json argument with the function name and arguments
22
 
23
  Available models:
24
- - fLlama-7B ([bitsandbytes NF4](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling)), ([GGML](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-GGML)), ([GPTQ](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-GPTQ)) - free
25
  - fLlama-13B ([bitsandbytes NF4](https://huggingface.co/Trelis/Llama-2-13b-chat-hf-function-calling)), ([GPTQ](https://huggingface.co/Trelis/Llama-2-13b-chat-hf-function-calling-GPTQ)) - paid
26
 
27
  ## Inference with Google Colab and HuggingFace 🤗
28
 
29
- **GPTQ (fastest + good accuracy)**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  Get started by saving your own copy of this [function calling chatbot](https://colab.research.google.com/drive/1u8x41Jx8WWtI-nzHOgqTxkS3Q_lcjaSX?usp=sharing).
31
  You will be able to run inference using a free Colab notebook if you select a gpu runtime. See the notebook for more details.
32
 
@@ -138,29 +164,28 @@ It is recommended to handle cases where:
138
  - There is no json object in the response
139
  - The response contains text in addition to the json response
140
 
141
- ## Quanitization Configurations
142
-
143
- The following `bitsandbytes` quantization config was used during training:
144
- - load_in_8bit: False
145
- - load_in_4bit: True
146
- - llm_int8_threshold: 6.0
147
- - llm_int8_skip_modules: None
148
- - llm_int8_enable_fp32_cpu_offload: False
149
- - llm_int8_has_fp16_weight: False
150
- - bnb_4bit_quant_type: nf4
151
- - bnb_4bit_use_double_quant: True
152
- - bnb_4bit_compute_dtype: bfloat16
153
 
 
154
  The following `bitsandbytes` quantization config was used during training:
155
- - load_in_8bit: False
156
- - load_in_4bit: True
157
- - llm_int8_threshold: 6.0
158
- - llm_int8_skip_modules: None
159
- - llm_int8_enable_fp32_cpu_offload: False
160
- - llm_int8_has_fp16_weight: False
161
- - bnb_4bit_quant_type: nf4
162
- - bnb_4bit_use_double_quant: True
163
- - bnb_4bit_compute_dtype: bfloat16
 
 
 
 
 
 
 
 
 
 
164
 
165
  ~
166
 
 
21
  - The model responds with a structured json argument with the function name and arguments
22
 
23
  Available models:
24
+ - fLlama-7B ([bitsandbytes NF4](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling)), ([GGML](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-GGML)), ([GPTQ](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-GPTQ)), ([GPTQ-trained](https://huggingface.co/Trelis/Llama-2-7b-chat-hf-function-calling-GPTQ-trained)) - free
25
  - fLlama-13B ([bitsandbytes NF4](https://huggingface.co/Trelis/Llama-2-13b-chat-hf-function-calling)), ([GPTQ](https://huggingface.co/Trelis/Llama-2-13b-chat-hf-function-calling-GPTQ)) - paid
26
 
27
  ## Inference with Google Colab and HuggingFace 🤗
28
 
29
+ **GPTQ-trained (fast + best accuracy) - this repo**
30
+ All other models are from bitsandbytes NF4 training. This model is specifically trained using GPTQ methods.
31
+
32
+ It is currently trickier to run because it's an adapter model. Try:
33
+
34
+ ```
35
+ !pip install -q git+https://github.com/SunMarc/transformers.git@gptq_integration
36
+ !pip install -q git+https://github.com/SunMarc/optimum.git@add-gptq-marc
37
+ !pip install -q git+https://github.com/SunMarc/peft.git@peft_gptq
38
+ !pip install -q git+https://github.com/fxmarty/AutoGPTQ.git@patch-act-order-exllama #probably could speed this up by using wheels. takes 5 mins right now.
39
+
40
+ import transformers
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
42
+ import torch
43
+ from transformers import AutoTokenizer, AutoModelForCausalLM
44
+ from auto_gptq.nn_modules.qlinear.qlinear_cuda_old import QuantLinear
45
+
46
+ # Script for model loading if using adapters
47
+ model_name_or_path = "ybelkada/llama-7b-GPTQ-test"
48
+
49
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # must be auto, cannot be cpu
50
+
51
+ adapter_model_name = 'Trelis/Llama-2-7b-chat-hf-function-calling-GPTQ-trained-adapters'
52
+
53
+ ```
54
+
55
+ **GPTQ (fast + good accuracy)**
56
  Get started by saving your own copy of this [function calling chatbot](https://colab.research.google.com/drive/1u8x41Jx8WWtI-nzHOgqTxkS3Q_lcjaSX?usp=sharing).
57
  You will be able to run inference using a free Colab notebook if you select a gpu runtime. See the notebook for more details.
58
 
 
164
  - There is no json object in the response
165
  - The response contains text in addition to the json response
166
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
+ ## Training procedure
169
  The following `bitsandbytes` quantization config was used during training:
170
+ - quant_method: gptq
171
+ - bits: 4
172
+ - tokenizer: None
173
+ - dataset: None
174
+ - group_size: 128
175
+ - damp_percent: 0.01
176
+ - desc_act: False
177
+ - sym: True
178
+ - true_sequential: True
179
+ - use_cuda_fp16: False
180
+ - model_seqlen: None
181
+ - block_name_to_quantize: None
182
+ - module_name_preceding_first_block: None
183
+ - batch_size: 1
184
+ - pad_token_id: None
185
+ - disable_exllama: True
186
+
187
+ ### Framework versions
188
+ - PEFT 0.5.0.dev0
189
 
190
  ~
191