File size: 6,574 Bytes
dc5a69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d957169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5a69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
pipeline_tag: text-generation
tags:
- llama-3.1
- astronomy
- astrophysics
- cosmology
- arxiv
- llama-cpp
- gguf-my-repo
inference: false
base_model: AstroMLab/AstroSage-8B
---

# Triangle104/AstroSage-8B-Q8_0-GGUF
This model was converted to GGUF format from [`AstroMLab/AstroSage-8B`](https://huggingface.co/AstroMLab/AstroSage-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/AstroMLab/AstroSage-8B) for more details on the model.

---
Model details:
-
https://arxiv.org/abs/2411.09012

AstroSage-Llama-3.1-8B is a domain-specialized natural-language AI assistant tailored for research in astronomy, astrophysics, and cosmology. Trained on the complete collection of astronomy-related arXiv papers from 2007-2024 along with millions of synthetically-generated question-answer pairs and other astronomical literature, AstroSage-Llama-3.1-8B demonstrates excellent proficiency on a wide range of questions. This achievement demonstrates the potential of domain specialization in AI, suggesting that focused training can yield capabilities exceeding those of much larger, general-purpose models.
Model Details

    Base Architecture: Meta-Llama-3.1-8B
    Base Model: Meta-Llama-3.1-8B
    Parameters: 8 billion
    Training Focus: Astronomy, Astrophysics, Cosmology, and Astronomical Instrumentation
    License: Llama 3.1 Community License
    Development Process:
        Continued Pre-training (CPT) on astronomical literature
        Supervised Fine-tuning (SFT) on QA pairs and instruction sets
        Model merging with Meta-Llama-3.1-8B-Instruct (75% CPT+SFT / 25% Meta-Instruct)

Using the model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("AstroMLab/AstroSage-8b", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("AstroMLab/AstroSage-8b")

# Function to generate a response
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    outputs = model.generate(
        **inputs,
        max_new_tokens=128,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )
    response = outputs[0][inputs['input_ids'].shape[-1]:]
    decoded = tokenizer.decode(response, skip_special_tokens=True)

    return decoded

# Example usage
prompt = """
You are an expert in general astrophysics. Your task is to answer the following question:
What are the main components of a galaxy?
"""
response = generate_response(prompt)
print(response)

Model Improvements and Performance
-
AstroSage-Llama-3.1-8B shows remarkable performance improvements:
Model 	Score (%)
AstroSage-Llama-3.1-8B 	80.9
GPT-4o 	80.4
LLaMA-3.1-8B 	73.7
Gemma-2-9B 	71.5
Qwen-2.5-7B 	70.4
Yi-1.5-9B 	68.4
InternLM-2.5-7B 	64.5
Mistral-7B-v0.3 	63.9
ChatGLM3-6B 	50.4

The model demonstrates:
-
    Outperformance of all 8B parameter models
    Comparable performance to GPT-4o (80.4%)
    ~1000x more cost-effective than proprietary models
    7 percentage-point improvement over base Llama-3.1-8b model

Training Data
-
    Continued Pre-training:
        ~250,000 arXiv preprints (2007-2024) from astro-ph and gr-qc
        Astronomy-related Wikipedia articles
        Selected astronomy textbooks
        Total: 3.3 billion tokens, 19.9 GB plaintext

    Supervised Fine-tuning:
        8.8 million curated QA pairs
        Filtered Infinity-Instruct-7M dataset
        Paper summaries and metadata
        Total: 2.0 billion tokens, 9.8 GB plaintext

Intended Use
-
    Curiosity-driven question answering
    Brainstorming new ideas
    Astronomical research assistance
    Educational support in astronomy
    Literature review and summarization
    Scientific explanation of concepts

Limitations
-
    Training data cutoff: January 2024
    As with all LLMs, hallucinations are possible
    Limited by 8B parameter size for complex reasoning
    Paper metadata not perfectly memorized
    Performance primarily validated on multiple-choice questions
    Primarily trained for use in English

Technical Specifications
-
    Architecture: Based on Meta-Llama 3.1
    Training Infrastructure: ORNL OLCF Frontier
    Hosting: Hugging Face Hub (AstroMLab/AstroSage-8B)

Ethical Considerations
-
While this model is designed for scientific use:

    Should not be used as sole source for critical research decisions
    Output should be verified against primary sources
    May reflect biases present in astronomical literature

Citation and Contact
-
    Corresponding author: Tijmen de Haan (tijmen dot dehaan at gmail dot com)
    AstroMLab: astromachinelearninglab at gmail dot com
    Please cite the AstroMLab 3 paper when referencing this model:

@preprint{dehaan2024astromlab3,
      title={AstroMLab 3: Achieving GPT-4o Level Performance in Astronomy with a Specialized 8B-Parameter Large Language Model}, 
      author={Tijmen de Haan and Yuan-Sen Ting and Tirthankar Ghosal and Tuan Dung Nguyen and Alberto Accomazzi and Azton Wells and Nesar Ramachandra and Rui Pan and Zechang Sun},
      year={2024},
      eprint={2411.09012},
      archivePrefix={arXiv},
      primaryClass={astro-ph.IM},
      url={https://arxiv.org/abs/2411.09012}, 
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/AstroSage-8B-Q8_0-GGUF --hf-file astrosage-8b-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/AstroSage-8B-Q8_0-GGUF --hf-file astrosage-8b-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/AstroSage-8B-Q8_0-GGUF --hf-file astrosage-8b-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/AstroSage-8B-Q8_0-GGUF --hf-file astrosage-8b-q8_0.gguf -c 2048
```