--- base_model: v000000/L3.1-Celestial-Stone-2x8B-DPO library_name: transformers tags: - merge - llama - mixtral - dpo - llama-cpp - gguf-my-repo --- # Triangle104/L3.1-Celestial-Stone-2x8B-DPO-Q6_K-GGUF This model was converted to GGUF format from [`v000000/L3.1-Celestial-Stone-2x8B-DPO`](https://huggingface.co/v000000/L3.1-Celestial-Stone-2x8B-DPO) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/v000000/L3.1-Celestial-Stone-2x8B-DPO) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/L3.1-Celestial-Stone-2x8B-DPO-Q6_K-GGUF --hf-file l3.1-celestial-stone-2x8b-dpo-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/L3.1-Celestial-Stone-2x8B-DPO-Q6_K-GGUF --hf-file l3.1-celestial-stone-2x8b-dpo-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/L3.1-Celestial-Stone-2x8B-DPO-Q6_K-GGUF --hf-file l3.1-celestial-stone-2x8b-dpo-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/L3.1-Celestial-Stone-2x8B-DPO-Q6_K-GGUF --hf-file l3.1-celestial-stone-2x8b-dpo-q6_k.gguf -c 2048 ```