Triangle104 commited on
Commit
3360620
1 Parent(s): ecce1f8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -64
README.md CHANGED
@@ -7,76 +7,107 @@ tags:
7
  - merge
8
  - llama-cpp
9
  - gguf-my-repo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  # Triangle104/SuperNova-Medius-Q5_K_S-GGUF
13
  This model was converted to GGUF format from [`arcee-ai/SuperNova-Medius`](https://huggingface.co/arcee-ai/SuperNova-Medius) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
14
  Refer to the [original model card](https://huggingface.co/arcee-ai/SuperNova-Medius) for more details on the model.
15
 
16
- ---
17
- Model details:
18
- -
19
- Arcee-SuperNova-Medius
20
-
21
- Arcee-SuperNova-Medius is a 14B parameter language model developed by Arcee.ai, built on the Qwen2.5-14B-Instruct architecture. This unique model is the result of a cross-architecture distillation pipeline, combining knowledge from both the Qwen2.5-72B-Instruct model and the Llama-3.1-405B-Instruct model. By leveraging the strengths of these two distinct architectures, SuperNova-Medius achieves high-quality instruction-following and complex reasoning capabilities in a mid-sized, resource-efficient form.
22
-
23
- SuperNova-Medius is designed to excel in a variety of business use cases, including customer support, content creation, and technical assistance, while maintaining compatibility with smaller hardware configurations. It’s an ideal solution for organizations looking for advanced capabilities without the high resource requirements of larger models like our SuperNova-70B.
24
- Distillation Overview
25
-
26
- The development of SuperNova-Medius involved a sophisticated multi-teacher, cross-architecture distillation process, with the following key steps:
27
-
28
- Logit Distillation from Llama 3.1 405B:
29
- We distilled the logits of Llama 3.1 405B using an offline approach.
30
- The top K logits for each token were stored to capture most of the probability mass while managing storage requirements.
31
-
32
- Cross-Architecture Adaptation:
33
- Using mergekit-tokensurgeon, we created a version of Qwen2.5-14B that uses the vocabulary of Llama 3.1 405B.
34
- This allowed for the use of Llama 3.1 405B logits in training the Qwen-based model.
35
-
36
- Distillation to Qwen Architecture:
37
- The adapted Qwen2.5-14B model was trained using the stored 405B logits as the target.
38
-
39
- Parallel Qwen Distillation:
40
- In a separate process, Qwen2-72B was distilled into a 14B model.
41
-
42
- Final Fusion and Fine-Tuning:
43
- The Llama-distilled Qwen model's vocabulary was reverted to Qwen vocabulary.
44
- After re-aligning the vocabularies, a final fusion and fine-tuning step was conducted, using a specialized dataset from EvolKit to ensure that SuperNova-Medius maintained coherence, fluency, and context understanding across a broad range of tasks.
45
-
46
- Performance Evaluation
47
-
48
- Below are the benchmark results of SuperNova-Medius compared to similar models in its class:
49
- Model Average IFEval BBH GPQA MMLU Pro MuSR Math Level 5
50
- Mistral-Small 2409 0.423 0.628 0.581 0.333 0.410 0.406 0.181
51
- Supernova-Lite 0.427 0.786 0.511 0.306 0.388 0.415 0.155
52
- Qwen2.5-14B-Instruct 0.450 0.827 0.623 0.358 0.490 0.403 0.000
53
- Supernova-Medius 0.480 0.832 0.631 0.359 0.502 0.402 0.152
54
-
55
- SuperNova-Medius performs exceptionally well in instruction-following (IFEval) and complex reasoning tasks (BBH), demonstrating its capability to handle a variety of real-world scenarios. It outperforms Qwen2.5-14B and SuperNova-Lite in multiple benchmarks, making it a powerful yet efficient choice for high-quality generative AI applications.
56
- Model Use Cases
57
-
58
- Arcee-SuperNova-Medius is suitable for a range of applications, including:
59
-
60
- Customer Support: With its robust instruction-following and dialogue management capabilities, SuperNova-Medius can handle complex customer interactions, reducing the need for human intervention.
61
- Content Creation: The model’s advanced language understanding and generation abilities make it ideal for creating high-quality, coherent content across diverse domains.
62
- Technical Assistance: SuperNova-Medius has a deep reservoir of technical knowledge, making it an excellent assistant for programming, technical documentation, and other expert-level content creation.
63
-
64
- Deployment Options
65
-
66
- SuperNova-Medius is available for use under the Apache-2.0 license. For those who need even higher performance, the full-size 70B SuperNova model can be accessed via an Arcee-hosted API or for local deployment. To learn more or explore deployment options, please reach out to [email protected].
67
- Technical Specifications
68
-
69
- Model Architecture: Qwen2.5-14B-Instruct
70
- Distillation Sources: Qwen2.5-72B-Instruct, Llama-3.1-405B-Instruct
71
- Parameter Count: 14 billion
72
- Training Dataset: Custom instruction dataset generated with EvolKit
73
- Distillation Technique: Multi-architecture offline logit distillation with cross-architecture vocabulary alignment.
74
-
75
- Summary
76
-
77
- Arcee-SuperNova-Medius provides a unique balance of power, efficiency, and versatility. By distilling knowledge from two top-performing teacher models into a single 14B parameter model, SuperNova-Medius achieves results that rival larger models while maintaining a compact size ideal for practical deployment. Whether for customer support, content creation, or technical assistance, SuperNova-Medius is the perfect choice for organizations looking to leverage advanced language model capabilities in a cost-effective and accessible form.
78
-
79
- ---
80
  ## Use with llama.cpp
81
  Install llama.cpp through brew (works on Mac and Linux)
82
 
 
7
  - merge
8
  - llama-cpp
9
  - gguf-my-repo
10
+ model-index:
11
+ - name: SuperNova-Medius
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ name: Text Generation
16
+ dataset:
17
+ name: IFEval (0-Shot)
18
+ type: HuggingFaceH4/ifeval
19
+ args:
20
+ num_few_shot: 0
21
+ metrics:
22
+ - type: inst_level_strict_acc and prompt_level_strict_acc
23
+ value: 55.6
24
+ name: strict accuracy
25
+ source:
26
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
27
+ name: Open LLM Leaderboard
28
+ - task:
29
+ type: text-generation
30
+ name: Text Generation
31
+ dataset:
32
+ name: BBH (3-Shot)
33
+ type: BBH
34
+ args:
35
+ num_few_shot: 3
36
+ metrics:
37
+ - type: acc_norm
38
+ value: 49.3
39
+ name: normalized accuracy
40
+ source:
41
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
42
+ name: Open LLM Leaderboard
43
+ - task:
44
+ type: text-generation
45
+ name: Text Generation
46
+ dataset:
47
+ name: MATH Lvl 5 (4-Shot)
48
+ type: hendrycks/competition_math
49
+ args:
50
+ num_few_shot: 4
51
+ metrics:
52
+ - type: exact_match
53
+ value: 32.48
54
+ name: exact match
55
+ source:
56
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
57
+ name: Open LLM Leaderboard
58
+ - task:
59
+ type: text-generation
60
+ name: Text Generation
61
+ dataset:
62
+ name: GPQA (0-shot)
63
+ type: Idavidrein/gpqa
64
+ args:
65
+ num_few_shot: 0
66
+ metrics:
67
+ - type: acc_norm
68
+ value: 17.9
69
+ name: acc_norm
70
+ source:
71
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
72
+ name: Open LLM Leaderboard
73
+ - task:
74
+ type: text-generation
75
+ name: Text Generation
76
+ dataset:
77
+ name: MuSR (0-shot)
78
+ type: TAUR-Lab/MuSR
79
+ args:
80
+ num_few_shot: 0
81
+ metrics:
82
+ - type: acc_norm
83
+ value: 19.19
84
+ name: acc_norm
85
+ source:
86
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
87
+ name: Open LLM Leaderboard
88
+ - task:
89
+ type: text-generation
90
+ name: Text Generation
91
+ dataset:
92
+ name: MMLU-PRO (5-shot)
93
+ type: TIGER-Lab/MMLU-Pro
94
+ config: main
95
+ split: test
96
+ args:
97
+ num_few_shot: 5
98
+ metrics:
99
+ - type: acc
100
+ value: 48.83
101
+ name: accuracy
102
+ source:
103
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/SuperNova-Medius
104
+ name: Open LLM Leaderboard
105
  ---
106
 
107
  # Triangle104/SuperNova-Medius-Q5_K_S-GGUF
108
  This model was converted to GGUF format from [`arcee-ai/SuperNova-Medius`](https://huggingface.co/arcee-ai/SuperNova-Medius) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
109
  Refer to the [original model card](https://huggingface.co/arcee-ai/SuperNova-Medius) for more details on the model.
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  ## Use with llama.cpp
112
  Install llama.cpp through brew (works on Mac and Linux)
113