--- license: mit base_model: facebook/esm2_t33_650M_UR50D tags: - generated_from_trainer model-index: - name: esm2_t33_650M_UR50D-finetuned-localization results: [] --- # esm2_t33_650M_UR50D-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1216 - Rmse: 1.0591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 226 | 1.2900 | 1.1358 | | No log | 2.0 | 452 | 1.3499 | 1.1618 | | 1.1023 | 3.0 | 678 | 1.0602 | 1.0297 | | 1.1023 | 4.0 | 904 | 1.2692 | 1.1266 | | 0.4485 | 5.0 | 1130 | 1.3467 | 1.1605 | | 0.4485 | 6.0 | 1356 | 1.2897 | 1.1356 | | 0.2574 | 7.0 | 1582 | 1.1185 | 1.0576 | | 0.2574 | 8.0 | 1808 | 1.2362 | 1.1119 | | 0.1358 | 9.0 | 2034 | 1.1828 | 1.0876 | | 0.1358 | 10.0 | 2260 | 1.1376 | 1.0666 | | 0.1358 | 11.0 | 2486 | 1.3182 | 1.1481 | | 0.1139 | 12.0 | 2712 | 1.1802 | 1.0864 | | 0.1139 | 13.0 | 2938 | 1.1709 | 1.0821 | | 0.0587 | 14.0 | 3164 | 1.1167 | 1.0568 | | 0.0587 | 15.0 | 3390 | 1.0711 | 1.0350 | | 0.0369 | 16.0 | 3616 | 1.1464 | 1.0707 | | 0.0369 | 17.0 | 3842 | 1.1536 | 1.0741 | | 0.0183 | 18.0 | 4068 | 1.1041 | 1.0507 | | 0.0183 | 19.0 | 4294 | 1.1113 | 1.0542 | | 0.0106 | 20.0 | 4520 | 1.1453 | 1.0702 | | 0.0106 | 21.0 | 4746 | 1.1076 | 1.0524 | | 0.0106 | 22.0 | 4972 | 1.1358 | 1.0657 | | 0.0053 | 23.0 | 5198 | 1.1298 | 1.0629 | | 0.0053 | 24.0 | 5424 | 1.1182 | 1.0575 | | 0.0007 | 25.0 | 5650 | 1.1216 | 1.0591 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1