Safetensors
English
llama
UltraMedical
iseesaw commited on
Commit
43d81f3
1 Parent(s): f38fddb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md CHANGED
@@ -1,3 +1,70 @@
1
  ---
2
  license: llama3
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama3
3
+ datasets:
4
+ - TsinghuaC3I/UltraMedical
5
+ - TsinghuaC3I/UltraMedical-Preference
6
+ language:
7
+ - en
8
+ metrics:
9
+ - accuracy
10
+ base_model: meta-llama/Meta-Llama-3-70B-Instruct
11
+ tags:
12
+ - UltraMedical
13
  ---
14
+ <div align="center">
15
+ <h1>
16
+ UltraMedical: Building Specialized Generalists in Biomedicine.
17
+ </h1>
18
+ </div>
19
+
20
+ <p align="center">
21
+ <a href="https://huggingface.co/datasets/TsinghuaC3I/UltraMedical">SFT Dataset</a> •
22
+ <a href="https://huggingface.co/datasets/TsinghuaC3I/UltraMedical-Preference">Pref Dataset</a> •
23
+ <a href="https://huggingface.co/collections/TsinghuaC3I/ultramedical-66d4076bad293ffc4bc41327">Collection</a> •
24
+ <!-- <a href="https://huggingface.co/spaces/TsinghuaC3I/UltraMedical-LM">Demo</a> • -->
25
+ <a href="https://arxiv.org/abs/2406.03949">Paper</a>
26
+ </p>
27
+
28
+ Llama-3-70B-UltraMedical is an open-access large language model (LLM) specialized in biomedicine. Developed by the Tsinghua C3I Lab, this model aims to enhance medical examination access, literature comprehension, and clinical knowledge.
29
+
30
+ Building on the foundation of Meta's Llama-3-70B, Llama-3-70B-UltraMedical is trained on our [UltraMedical](https://github.com/TsinghuaC3I/UltraMedical) collection with supervised fine-tuning (SFT), iterative preference learning (like DPO and KTO). The UltraMedical collection is a large-scale, high-quality dataset of biomedical instructions, comprising 410,000 synthetic and manually curated samples, along with more than 100,000 preference data.
31
+
32
+ ### Inference with vLLM
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer
36
+ from vllm import LLM, SamplingParams
37
+
38
+ llm = LLM(model="TsinghuaC3I/Llama-3-70B-UltraMedical", trust_remote_code=True)
39
+ tokenizer = AutoTokenizer.from_pretrained("TsinghuaC3I/Llama-3-70B-UltraMedical")
40
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.9, max_tokens=1024, stop=["<|eot_id|>"])
41
+
42
+ messages = [
43
+ {"role": "user", "content": """The question format used in the above input examples。"""},
44
+ ]
45
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
46
+ print(prompts[0])
47
+ """
48
+ <|begin_of_text|><|start_header_id|>user<|end_header_id|>
49
+
50
+ {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
51
+
52
+ """
53
+
54
+ outputs = llm.generate(prompts=prompts, sampling_params=sampling_params)
55
+ print(outputs[0].outputs[0].text)
56
+ ```
57
+
58
+
59
+ ### Citation
60
+
61
+ ```
62
+ @misc{zhang2024ultramedical,
63
+ title={UltraMedical: Building Specialized Generalists in Biomedicine},
64
+ author={Kaiyan Zhang and Sihang Zeng and Ermo Hua and Ning Ding and Zhang-Ren Chen and Zhiyuan Ma and Haoxin Li and Ganqu Cui and Biqing Qi and Xuekai Zhu and Xingtai Lv and Hu Jinfang and Zhiyuan Liu and Bowen Zhou},
65
+ year={2024},
66
+ eprint={2406.03949},
67
+ archivePrefix={arXiv},
68
+ primaryClass={cs.CL}
69
+ }
70
+ ```