TusharJoshi89 commited on
Commit
862d087
1 Parent(s): 7800b22

Update Readme.md

Browse files
Files changed (1) hide show
  1. README.md +61 -34
README.md CHANGED
@@ -3,10 +3,11 @@ license: apache-2.0
3
  language:
4
  - en
5
  metrics:
6
- - rouge
7
  pipeline_tag: summarization
8
  tags:
9
  - t5
 
10
  - summarization
11
  - medical-research
12
  ---
@@ -25,20 +26,18 @@ This modelcard aims to be a base template for new models. It has been generated
25
  This is a text generative model to summarize long abstract from medical jourals into one liners. These one liners can be used as titles in the journal.
26
 
27
 
28
- - **Developed by:** [Tushar Joshi]
29
- - **Shared by [optional]:** [Tushar Joshi]
30
- - **Model type:** [T5]
31
- - **Language(s) (NLP):** [English]
32
- - **License:** [Apache 2.9]
33
- - **Finetuned from model [optional]:** [T5 Baseline]
34
 
35
  ### Model Sources [optional]
36
 
37
  <!-- Provide the basic links for the model. -->
38
 
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
  ## Uses
44
 
@@ -49,26 +48,21 @@ This is a text generative model to summarize long abstract from medical jourals
49
  ### Direct Use
50
 
51
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
52
 
53
- [More Information Needed]
54
-
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
 
61
  ### Out-of-Scope Use
62
 
63
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
 
65
- [More Information Needed]
66
 
67
  ## Bias, Risks, and Limitations
68
 
69
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
70
 
71
- [More Information Needed]
72
 
73
  ### Recommendations
74
 
@@ -80,46 +74,56 @@ Users (both direct and downstream) should be made aware of the risks, biases and
80
 
81
  Use the code below to get started with the model.
82
 
83
- [More Information Needed]
 
 
 
 
 
 
 
 
84
 
85
  ## Training Details
86
 
87
  ### Training Data
88
 
89
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
90
-
91
- [More Information Needed]
92
 
93
  ### Training Procedure
94
 
95
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
96
 
97
  #### Preprocessing [optional]
98
-
99
- [More Information Needed]
100
 
101
 
102
  #### Training Hyperparameters
103
 
104
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
105
 
106
  #### Speeds, Sizes, Times [optional]
107
 
108
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
109
 
110
- [More Information Needed]
111
 
112
  ## Evaluation
113
 
114
  <!-- This section describes the evaluation protocols and provides the results. -->
 
115
 
116
  ### Testing Data, Factors & Metrics
117
 
 
 
118
  #### Testing Data
119
 
120
  <!-- This should link to a Data Card if possible. -->
121
-
122
- [More Information Needed]
123
 
124
  #### Factors
125
 
@@ -130,6 +134,28 @@ Use the code below to get started with the model.
130
  #### Metrics
131
 
132
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  [More Information Needed]
135
 
@@ -153,11 +179,11 @@ Use the code below to get started with the model.
153
 
154
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
155
 
156
- - **Hardware Type:** [More Information Needed]
157
- - **Hours used:** [More Information Needed]
158
- - **Cloud Provider:** [More Information Needed]
159
- - **Compute Region:** [More Information Needed]
160
- - **Carbon Emitted:** [More Information Needed]
161
 
162
  ## Technical Specifications [optional]
163
 
@@ -201,10 +227,11 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
201
 
202
  ## Model Card Authors [optional]
203
 
204
- [More Information Needed]
205
 
206
  ## Model Card Contact
207
 
208
- [More Information Needed]
 
209
 
210
 
 
3
  language:
4
  - en
5
  metrics:
6
+ - Rouge
7
  pipeline_tag: summarization
8
  tags:
9
  - t5
10
+ - t5-small
11
  - summarization
12
  - medical-research
13
  ---
 
26
  This is a text generative model to summarize long abstract from medical jourals into one liners. These one liners can be used as titles in the journal.
27
 
28
 
29
+ - **Developed by:** Tushar Joshi
30
+ - **Shared by [optional]:** Tushar Joshi
31
+ - **Model type:** t5-small
32
+ - **Language(s) (NLP):** English
33
+ - **License:** Apache 2.0
34
+ - **Finetuned from model [optional]:** t5-small baseline
35
 
36
  ### Model Sources [optional]
37
 
38
  <!-- Provide the basic links for the model. -->
39
 
40
+ - **Repository:** https://huggingface.co/t5-small
 
 
41
 
42
  ## Uses
43
 
 
48
  ### Direct Use
49
 
50
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
+ * As a text summarizer for medical abstracts and journals.
52
 
 
 
 
 
 
 
 
53
 
54
  ### Out-of-Scope Use
55
 
56
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
 
58
+ Should not be used as a text summarizer for very long tasks. Maximum token size of 1024.
59
 
60
  ## Bias, Risks, and Limitations
61
 
62
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
+ * Max input token size of 1024
64
+ * Max output token size of 24
65
 
 
66
 
67
  ### Recommendations
68
 
 
74
 
75
  Use the code below to get started with the model.
76
 
77
+ ```
78
+ from transformers import pipeline
79
+ text = """Text that needs to be summarized"""
80
+
81
+ summarizer = pipeline("summarization", model="path-to-model")
82
+ summary = summarizer(text)[0]["summary_text"]
83
+
84
+ print (summary)
85
+ ```
86
 
87
  ## Training Details
88
 
89
  ### Training Data
90
 
91
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
92
+ The training data is internally curated and canot be exposed.
 
93
 
94
  ### Training Procedure
95
 
96
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
+ None
98
 
99
  #### Preprocessing [optional]
100
+ None
 
101
 
102
 
103
  #### Training Hyperparameters
104
 
105
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
+ - None
107
 
108
  #### Speeds, Sizes, Times [optional]
109
 
110
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
111
 
112
+ The training was done using GPU T4x 2. The task took 4:09:47 to complete. The dataset size of 10,000 examples was used for training the generative model.
113
 
114
  ## Evaluation
115
 
116
  <!-- This section describes the evaluation protocols and provides the results. -->
117
+ The quality of summarization was tested on 5000 medical journals created over last 20 years. The data of medical jounals is scraped from various sources.
118
 
119
  ### Testing Data, Factors & Metrics
120
 
121
+ Test Data Size: 5000 examples
122
+
123
  #### Testing Data
124
 
125
  <!-- This should link to a Data Card if possible. -->
126
+ The testing data is internally generated and curated.
 
127
 
128
  #### Factors
129
 
 
134
  #### Metrics
135
 
136
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
137
+ The model was evaluated on Rouge Metrics below are the baseline results achieved
138
+ Epoch Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
139
+ 1 4.160200 2.802442 0.255200 0.101900 0.233100 0.233200 15.500300
140
+ 2 2.962400 2.645199 0.288200 0.118300 0.262600 0.262600 15.827100
141
+ 3 2.820600 2.578758 0.295200 0.121800 0.268400 0.268500 16.218300
142
+ 4 2.776400 2.533263 0.302900 0.125800 0.275500 0.275400 16.341800
143
+ 5 2.699700 2.504000 0.304600 0.127300 0.277300 0.277100 16.410100
144
+ 6 2.664700 2.473418 0.306900 0.129800 0.280200 0.280100 16.354000
145
+ 7 2.619600 2.454723 0.307700 0.131000 0.280400 0.280400 16.526000
146
+ 8 2.591600 2.435169 0.310700 0.133200 0.283300 0.283400 16.441900
147
+ 9 2.571600 2.419672 0.309200 0.132000 0.281900 0.281700 16.402300
148
+ 10 2.548000 2.412395 0.309400 0.132900 0.282200 0.282300 16.325600
149
+ 11 2.535200 2.402286 0.309600 0.132300 0.282100 0.282000 16.377400
150
+ 12 2.508700 2.396766 0.310700 0.132600 0.283100 0.283200 16.459200
151
+ 13 2.486500 2.389850 0.311700 0.133900 0.284100 0.284200 16.458600
152
+ 14 2.508100 2.388508 0.312400 0.133700 0.284500 0.284500 16.407200
153
+ 15 2.474800 2.379151 0.313100 0.134000 0.285000 0.284900 16.457200
154
+ 16 2.469000 2.378473 0.311900 0.133300 0.284100 0.284000 16.390700
155
+ 17 2.458700 2.376562 0.311500 0.133400 0.283500 0.283400 16.448800
156
+ 18 2.442800 2.375408 0.313700 0.134600 0.285400 0.285400 16.414100
157
+ 19 2.454800 2.372553 0.312900 0.134100 0.284900 0.285000 16.445100
158
+ 20 2.438900 2.372551 0.312300 0.134000 0.284500 0.284600 16.435500
159
 
160
  [More Information Needed]
161
 
 
179
 
180
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
181
 
182
+ - **Hardware Type:** GPU T4 x 2
183
+ - **Hours used:** 4.5
184
+ - **Cloud Provider:** GCP
185
+ - **Compute Region:** Ireland
186
+ - **Carbon Emitted:** Unknown
187
 
188
  ## Technical Specifications [optional]
189
 
 
227
 
228
  ## Model Card Authors [optional]
229
 
230
+ Tushar Joshi
231
 
232
  ## Model Card Contact
233
 
234
+ Tushar Joshi
235
+ LinkedIn - https://www.linkedin.com/in/tushar-joshi-816133100/
236
 
237