import json from typing import List, Union from datasets import Dataset, concatenate_datasets from opencompass.openicl.icl_evaluator import AccEvaluator from .base import BaseDataset class AdvDataset(BaseDataset): """Base adv GLUE dataset. Adv GLUE is built on GLUE dataset. The main purpose is to eval the accuracy drop on original set and adv set. Args: subset (str): The subset task of adv GLUE dataset. filter_keys (str): The keys to be filtered to create the original set for comparison. """ def __init__( self, subset: str, filter_keys: Union[str, List[str]], **kwargs, ): self.subset = subset if isinstance(filter_keys, str): filter_keys = [filter_keys] self.filter_keys = filter_keys super().__init__(**kwargs) def aug_with_original_data(self, dataset): """Create original dataset and concat to the end.""" # Remove data without original reference dataset = dataset.filter( lambda x: any([x[k] for k in self.filter_keys])) def ori_preprocess(example): for k in self.filter_keys: if example[k]: new_k = k.split('original_')[-1] example[new_k] = example[k] example['type'] = 'original' return example original_dataset = dataset.map(ori_preprocess) return concatenate_datasets([dataset, original_dataset]) def load(self, path): """Load dataset and aug with original dataset.""" with open(path, 'r') as f: raw_data = json.load(f) subset = raw_data[self.subset] # In case the missing keys in first example causes Dataset # to ignore them in the following examples when building. for k in self.filter_keys: if k not in subset[0]: subset[0][k] = None dataset = Dataset.from_list(raw_data[self.subset]) dataset = self.aug_with_original_data(dataset) def choices_process(example): example['label_option'] = chr(ord('A') + example['label']) return example dataset = dataset.map(choices_process) return dataset # label 0 for A. negative # label 1 for B. positive class AdvSst2Dataset(AdvDataset): """Adv GLUE sst2 dataset.""" def __init__(self, **kwargs): super().__init__(subset='sst2', filter_keys='original_sentence', **kwargs) # label 0 for not_duplicate, A. no # label 1 for duplicate, B. yes class AdvQqpDataset(AdvDataset): """Adv GLUE qqp dataset.""" def __init__(self, **kwargs): super().__init__( subset='qqp', filter_keys=['original_question1', 'original_question2'], **kwargs) # # label 0 for entailment, A. yes # # label 1 for neutral, B. maybe # # label 2 for contradiction, C. no class AdvMnliDataset(AdvDataset): """Adv GLUE mnli dataset.""" def __init__(self, **kwargs): super().__init__( subset='mnli', filter_keys=['original_premise', 'original_hypothesis'], **kwargs) # # label 0 for entailment, A. yes # # label 1 for neutral, B. maybe # # label 2 for contradiction, C. no class AdvMnliMMDataset(AdvDataset): """Adv GLUE mnli mm dataset.""" def __init__(self, **kwargs): super().__init__( subset='mnli-mm', filter_keys=['original_premise', 'original_hypothesis'], **kwargs) # # label 0 for entailment, A. yes # # label 1 for not entailment, B. no class AdvQnliDataset(AdvDataset): """Adv GLUE qnli dataset.""" def __init__(self, **kwargs): super().__init__( subset='qnli', filter_keys=['original_question', 'original_sentence'], **kwargs) # # label 0 for entailment, A. yes # # label 1 for not entailment, B. no class AdvRteDataset(AdvDataset): """Adv GLUE rte dataset.""" def __init__(self, **kwargs): super().__init__( subset='rte', filter_keys=['original_sentence1', 'original_sentence2'], **kwargs) class AccDropEvaluator(AccEvaluator): """Eval accuracy drop.""" def __init__(self) -> None: super().__init__() def score(self, predictions: List, references: List) -> dict: """Calculate scores and accuracy. Args: predictions (List): List of probabilities for each class of each sample. references (List): List of target labels for each sample. Returns: dict: calculated scores. """ n = len(predictions) assert n % 2 == 0, 'Number of examples should be even.' acc_after = super().score(predictions[:n // 2], references[:n // 2]) acc_before = super().score(predictions[n // 2:], references[n // 2:]) acc_drop = 1 - acc_after['accuracy'] / acc_before['accuracy'] return dict(acc_drop=acc_drop, acc_after=acc_after['accuracy'], acc_before=acc_before['accuracy'])