import json import os.path as osp import sys from datasets import Dataset from sklearn.metrics import classification_report from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET from ..base import BaseDataset from .math_equivalence import is_equiv from .post_process import parse_math_answer, parse_qa_multiple_answer import evaluate from nltk.translate.bleu_score import sentence_bleu # # from bert_score import score import re from transformers import BasicTokenizer from rouge_chinese import Rouge basic_tokenizer = BasicTokenizer(tokenize_chinese_chars=True) @LOAD_DATASET.register_module() class MedBenchDataset(BaseDataset): @staticmethod def load(path: str, name: str, setting_name: str): from .dataset_loader import load_dataset, load_dataset_as_result_schema assert setting_name in 'zero-shot', 'only support zero-shot setting' dataset_wo_label = load_dataset(name, setting_name, path) dataset_with_label = load_dataset_as_result_schema(name, path) dataset = [] for d1, d2 in zip(dataset_wo_label, dataset_with_label): dataset.append({ 'id': d2.index, 'problem_input': d1['context'], 'label': d2.label, }) dataset = Dataset.from_list(dataset) return dataset @ICL_EVALUATORS.register_module() class MedBenchEvaluator(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred': pred, 'answer': ref, 'correct': False} if is_equiv(pred, ref): cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'Accuracy': score, 'details': details} def process_generated_results_CMeEE(pred_file): # 实体每类占一行,每行格式为 "[类型名称]实体:实体名称1,实体名称2,实体名称3\n" # 多个实体,用 ,符号分割 structured_output = [] answer_choices = ['药物', '设备', '医院科室', '微生物类', '身体部位', '医疗操作', '医学检验项目', '症状', '疾病'] for pred in pred_file: list_entities = [] for choice in answer_choices: for piece in re.split('\n', pred): if piece.startswith(f"{choice}"): mentions = re.split(r"[,,]", piece.replace(f"{choice}:", "").replace(f"{choice}:", "")) for ment in mentions: list_entities.append({'type':choice, 'entity':ment}) structured_output.append(list_entities) return structured_output def process_generated_results_EMR(pred_file): structured_output = [] regex = r"^(主诉|现病史|既往史|个人史|婚育史|家族史)[::]([\s\S]+)$" for prediction in pred_file: entities: dict = {} if "\n\n" in prediction: blocks = prediction.split("\n\n") else: blocks = prediction.splitlines() for line in blocks: if match := re.match(regex, line.strip()): type_ = match[1] mention = match[2].strip() entities[type_] = mention structured_output.append(entities) return structured_output def process_generated_results_CMeIE(pred_file): structured_output = [] for line in pred_file: gen_output = line answer_choices = "相关(导致)、鉴别诊断、遗传因素、发病性别倾向、相关(症状)、手术治疗、预防、辅助检查、筛查、阶段、临床表现、风险评估因素、同义词、发病年龄、预后生存率、病史、传播途径、治疗后症状、药物治疗、辅助治疗、化疗、死亡率、放射治疗、病因、组织学检查、内窥镜检查、多发群体、并发症、实验室检查、就诊科室、病理生理、高危因素、发病率、多发地区、病理分型、影像学检查、转移部位、发病部位、相关(转化)、外侵部位、预后状况、发病机制、多发季节" re_choices = "|".join(re.escape(choice) for choice in answer_choices.split('、')) regex = ( rf'关系[::]["“]({re_choices})["”][,,]' r'头实体[::]["“]([^"”]+)["”][,,]尾实体[::]["“]([^"”]+)["”]' ) list_spos = [] list_answer_strs = gen_output.split("\n") for line in list_answer_strs: for item in re.finditer(regex, line): print(item) for match in re.finditer(regex, line): list_spos.append({"predicate": match[1], "subject": match[2], "object": match[3]}) structured_output.append(list_spos) return structured_output def process_generated_results_CDN(pred_file): structured_output = [] answer_choices = json.load(open('./opencompass/datasets/medbench/entity_list.jsonl', 'r')) for line in pred_file: gen_output = line answer_str = gen_output.split("\n")[-1] answers = answer_str.split(",") answers = [w.strip() for w in answers if len(w.strip()) > 0] answers = [w for w in answers if w in answer_choices] answers = list(set(answers)) answers = [ { "entity": w, "type": "normalization", } for w in answers ] structured_output.append(answers) return structured_output def process_generated_results_CDEE(pred_file): structured_output = [] for prediction in pred_file: events: list[dict] = [] for line in prediction.splitlines(): if "主体词" in line: line = line.rstrip("。") kvs = line.split(";") kv_dict = dict(kv.split(":", maxsplit=1) for kv in kvs if ":" in kv) events.append({ "主体词": kv_dict.get("主体词", ""), "发生状态": ( v if (v := kv_dict.get("发生状态", "不确定")) in ("不确定", "否定") else "" ), "描述词": ( v.split(",") if (v := kv_dict.get("描述词", "空")) != "空" else [] ), "解剖部位": ( v.split(",") if (v := kv_dict.get("解剖部位", "空")) != "空" else [] ), }) structured_output.append(events) return structured_output def process_generated_results_CTC(pred_file): structured_output = [] for line in pred_file: gen_output = line # 答案格式:直接回答分类标签 answer_str = gen_output.strip() structured_output.append(answer_str) return structured_output def process_generated_results_doc_parsing(pred_file): float_field_regex = r"(体温|脉搏|心率|收缩压|舒张压|呼吸)[^\d]*(\d+(?:\.\d+)?)" output = [] for prediction in pred_file: entities = { "体温": "未扪及", "脉搏": "未扪及", "心率": "未扪及", "收缩压": "未扪及", "舒张压": "未扪及", "呼吸": "未扪及", "是否上腹部深压痛": None, "是否腹部反跳痛": None, "上腹部肿块": None, } for sentence in re.split("[,|。|\n]", prediction): for match in re.finditer(float_field_regex, prediction): entities[match[1]] = match[2] if "上腹部深压痛" in sentence: if re.search("是(?!否)|(?:^|[^不])存在|有", sentence): entities["是否上腹部深压痛"] = "是" else: entities["是否上腹部深压痛"] = "否" elif "腹部反跳痛" in sentence: if re.search("是(?!否)|(?:^|[^不])存在|有", sentence): entities["是否腹部反跳痛"] = "是" else: entities["是否腹部反跳痛"] = "否" elif "上腹部肿块" in sentence: if re.search("是(?!否)|(?:^|[^不])存在|有", sentence): entities["上腹部肿块"] = "扪及" else: entities["上腹部肿块"] = "未扪及" result = [ { "type": "体温(℃)", "entity": entities["体温"], }, { "type": "脉搏(次/分)", "entity": entities["脉搏"], }, { "type": "心率(次/分)", "entity": entities["心率"], }, { "type": "收缩压(mmHg)", "entity": entities["收缩压"], }, { "type": "舒张压(mmHg)", "entity": entities["舒张压"], }, { "type": "呼吸(次/分)", "entity": entities["呼吸"], }, ] if entities["是否上腹部深压痛"]: result.append({ "type": "是否上腹部深压痛", "entity": entities["是否上腹部深压痛"], }) if entities["是否腹部反跳痛"]: result.append({ "type": "是否腹部反跳痛", "entity": entities["是否腹部反跳痛"], }) if entities["上腹部肿块"]: result.append({ "type": "上腹部肿块", "entity": entities["上腹部肿块"], }) output.append(result) return output def process_generated_results_mrg(pred_file): structured_output = [] regex = r"^(主诉|现病史|辅助检查|既往史|诊断|建议)[::]([\s\S]+)$" for prediction in pred_file: entities = {} if "\n\n" in prediction: blocks = prediction.split("\n\n") else: blocks = prediction.splitlines() for line in blocks: if match := re.match(regex, line.strip()): type_ = match[1] mention = match[2].strip() entities[type_] = mention structured_output.append(entities) return structured_output def calc_info_extract_task_scores(list_structured_predict, list_structured_golden): assert len(list_structured_golden) == len(list_structured_predict) tp = 0 fp = 0 fn = 0 for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict): # samp_golden: [[{}]] answer_golden = samp_golden answer_predict = samp_predict # assert isinstance(answer_golden, list) # assert isinstance(answer_predict, list), "sample format is wrong!" set_golden = set() for inst in answer_golden: assert isinstance(inst, dict) keys = sorted(list(inst.keys())) inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys ]) # inst = list(inst.items()) # inst.sort() # inst = tuple(inst) set_golden.add(inst) set_predict = set() for inst in answer_predict: assert isinstance(inst, dict) keys = sorted(list(inst.keys())) inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys]) set_predict.add(inst) tp += len(set_golden.intersection(set_predict)) fp += len(set_predict.difference(set_golden)) fn += len(set_golden.difference(set_predict)) if tp: precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * precision * recall / (precision + recall) else: precision, recall, f1 = 0, 0, 0 return precision, recall, f1 def calc_cls_task_scores(list_structured_golden, list_structured_predict, list_labels=None, return_macro=False, ): # types = list_labels # scores = {c: {"tp": 0, "fp": 0, "fn": 0, "tn": 0} for c in list_labels + ["ALL"]} predictions = [] ground_truths = [] # Count GT relations and Predicted relations assert len(list_structured_golden) == len(list_structured_predict) n_sents = len(list_structured_golden) # Count TP, FP and FN per type for pred_samp, gt_samp in zip(list_structured_predict, list_structured_golden): pred_label = pred_samp gt_label = gt_samp # assert gt_label != "" if gt_label == "": get_label = list_labels[0] if pred_label == "": pred_label = list_labels[0] predictions.append(pred_label) ground_truths.append(gt_label) # metric cls_report = classification_report( ground_truths, predictions, output_dict=True, zero_division=0, ) if return_macro: return cls_report["macro avg"]["precision"], \ cls_report["macro avg"]["recall"], \ cls_report["macro avg"]["f1-score"] else: return cls_report["weighted avg"]["precision"], \ cls_report["weighted avg"]["recall"], \ cls_report["weighted avg"]["f1-score"] def calc_nlg_task_scores(list_structured_golden, list_structured_predict): assert len(list_structured_golden) == len(list_structured_predict) scores = [] predictions = [] references = [] details = [] for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict): answer_golden = samp_golden answer_predict = samp_predict if not (answer_predict and answer_golden): continue # basic tokenizer: 拆分中文字,保留英文单词 answer_predict = basic_tokenizer.tokenize(answer_predict) answer_golden = basic_tokenizer.tokenize(answer_golden) answer_predict = " ".join(answer_predict).strip() answer_golden = " ".join(answer_golden).strip() if answer_golden.strip() == "": answer_golden = "无 。" if answer_predict.strip() == "": answer_predict = "无 。" predictions.append(answer_predict) references.append(answer_golden) details.append({'pred':answer_predict, 'answer':answer_golden, 'correct':False}) rouge = Rouge() # bleu = evaluate.load('sacrebleu') scores = rouge.get_scores(predictions, references, avg=True) # scores_bleu = bleu.compute(predictions=predictions, references=references) rouge1 = scores["rouge-1"]["f"] rouge2 = scores["rouge-2"]["f"] rougeL = scores["rouge-l"]["f"] # bleu = sentence_bleu(references, predictions) # bert_score = [] # for id in range(len(predictions)): # P, R, F1 = score([predictions[i]], [references[i]], model_type='bert-base-chinese', lang="zh", verbose=True) # bert_score.append(F1) # bert_score = float(sum(bert_score)) / float(len(bert_score)) # return rougeL, bleu, bert_score return {'RougeL': rougeL, 'details':details} def calc_scores_f1(dict_gt, dict_pred): details = [] for gt, pred in zip(dict_gt, dict_pred): details.append({'pred':pred, 'answer':gt, 'correct':None}) precision, recall, f1 = calc_info_extract_task_scores(dict_gt, dict_pred) return {'F1':f1, 'details':details} def calc_scores_ctc(dict_gt, dict_pred): details = [] for gt, pred in zip(dict_gt, dict_pred): details.append({'pred':pred, 'answer':gt, 'correct':None}) gts = dict_gt preds = dict_pred precision, recall, f1 = calc_cls_task_scores( gts, preds, list_labels=['非上述类型', '疾病', '症状(患者感受)', '体征(医生检测)', '怀孕相关', '肿瘤进展', '疾病分期', '过敏耐受', '器官组织状态', '预期寿命', '口腔相关', '药物', '治疗或手术', '设备', '护理', '诊断', '实验室检查', '风险评估', '受体状态', '年龄', '特殊病人特征', '读写能力', '性别', '教育情况', '居住情况', '种族', '知情同意', '参与其它试验', '研究者决定', '能力', '伦理审查', '依存性', '成瘾行为', '睡眠', '锻炼', '饮食', '酒精使用', '性取向', '吸烟状况', '献血', '病例来源', '残疾群体', '健康群体', '数据可及性', "含有多个类别"], return_macro=True, ) return {'Macro-F1':f1, 'details':details} def calc_scores_nlg(dict_gt, dict_pred): # scores = {} scores = {'score':0, 'details':[]} success_flag = 1 gts = dict_gt preds = dict_pred # if not len(gts) == len(preds): # success_flag = 0 # try: return calc_nlg_task_scores(gts, preds) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CMeEE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CMeEE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_DBMHG(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_EMR(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_IMCS_V2_MRG(BaseEvaluator): def score(self, predictions, references): # predictions = process_generated_results_mrg(predictions) references_revise = [] for item in references: temp_ref = '' for sub_item in item: temp_ref += sub_item['type'] + ':' + sub_item['entity'] + '\n' references_revise.append(temp_ref) return calc_nlg_task_scores(references_revise, predictions) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CMeIE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CMeIE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CDEE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CDEE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CDN(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CDN(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CTC(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CTC(predictions) return calc_scores_ctc(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_Doc_parsing(BaseEvaluator): def score(self, predictions, references): # predictions = process_generated_results_doc_parsing(predictions) references_revise = [] for item in references: temp_ref = '' for sub_item in item: temp_ref += sub_item['type'] + ':' + sub_item['entity'] + '\n' references_revise.append(temp_ref) return calc_nlg_task_scores(references_revise, predictions) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_NLG(BaseEvaluator): def score(self, predictions, references): # predictions = process_generated_results_med(predictions) return calc_scores_nlg(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_Cloze(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] # predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred':pred, 'answer':ref, 'correct':False} if sum([item in pred for item in ref]) == len(ref): cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'Accuracy': score, 'details': details} @ICL_EVALUATORS.register_module() class MedBenchEvaluator_TF(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] # predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): if '不' in pred or '否' in pred: cur_pred = '不可以' else: cur_pred = '可以' detail = {'pred':cur_pred, 'answer':ref, 'correct':False} if cur_pred == ref: cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'Accuracy': score, 'details': details}