from opencompass.multimodal.models.minigpt_4 import MiniGPT4SEEDBenchPromptConstructor # noqa # dataloader settings image_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'answer', 'choices', 'data_type', 'question_type_id', 'index', 'data_path', 'question_id' ]) ] video_pipeline = [ dict(type='mmaction.Resize', scale=(224, 224), interpolation='bicubic'), dict(type='mmaction.CenterCrop', crop_size=224), dict(type='Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'answer', 'choices', 'data_type', 'question_type_id', 'index', 'data_path', 'question_id' ]) ] dataset = dict( type='opencompass.SEEDBenchDataset', ann_file='data/seedbench/SEED-Bench.json', cc3m_path='data/seedbench/SEED-Bench-image', sthv2_path='data/seedbench/sthv2/videos', epic_kitchens_path='data/seedbench/3h91syskeag572hl6tvuovwv4d/videos/test', breakfast_path='data/seedbench/BreakfastII_15fps_qvga_sync', image_pipeline=image_pipeline, video_pipeline=video_pipeline, only_image=True) minigpt_4_seedbench_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings minigpt_4_seedbench_model = dict( type='minigpt-4', low_resource=False, llama_model='/path/to/vicuna/', prompt_constructor=dict(type=MiniGPT4SEEDBenchPromptConstructor, image_prompt='###Human: ', reply_prompt='###Assistant:'), post_processor=None, mode='loss') # evaluation settings minigpt_4_seedbench_evaluator = [dict(type='opencompass.SEEDBenchAcc')] minigpt_4_load_from = '/path/to/prerained_minigpt4_7b.pth'