from opencompass.multimodal.models.mplug_owl import ( MplugOwlMMBenchPostProcessor, MplugOwlMMBenchPromptConstructor) # dataloader settings val_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict( type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), dict( type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'answer', 'category', 'l2-category', 'context', 'index', 'options_dict', 'options' ], ), ] dataset = dict(type='opencompass.MMBenchDataset', data_file='data/mmbench/mmbench_test_20230712.tsv', pipeline=val_pipeline) mplug_owl_mmbench_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False), ) # model settings mplug_owl_mmbench_model = dict( type='mplug_owl-7b', model_path='/mplug-owl-llama-7b-ft', prompt_constructor=dict(type=MplugOwlMMBenchPromptConstructor), post_processor=dict(type=MplugOwlMMBenchPostProcessor) ) # noqa # evaluation settings mplug_owl_mmbench_evaluator = [ dict(type='opencompass.DumpResults', save_path='work_dirs/mplug_owl-7b-mmagibench-v0.1.0.xlsx') ]