# Evaluation with LMDeploy We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. **TurboMind** is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass. ## Setup ### Install OpenCompass Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started.html) to install the OpenCompass and prepare the evaluation datasets. ### Install LMDeploy Install lmdeploy via pip (python 3.8+) ```shell pip install lmdeploy ``` ## Evaluation OpenCompass integrates turbomind's python API for evaluation. We take the InternLM-20B as example. Firstly, we prepare the evaluation config `configs/eval_internlm_turbomind.py`: ```python from mmengine.config import read_base from opencompass.models.turbomind import TurboMindModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets # and output the results in a chosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) # config for internlm-20b model internlm_20b = dict( type=TurboMindModel, abbr='internlm-20b-turbomind', path="internlm/internlm-20b", # this path should be same as in huggingface engine_config=dict(session_len=2048, max_batch_size=8, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, run_cfg=dict(num_gpus=1, num_procs=1), end_str='' ) models = [internlm_20b] ``` Then, in the home folder of OpenCompass, start evaluation by the following command: ```shell python run.py configs/eval_internlm_turbomind.py -w outputs/turbomind/internlm-20b ``` You are expected to get the evaluation results after the inference and evaluation. **Note**: - If you want to pass more arguments for `engine_config`和`gen_config` in the evaluation config file, please refer to [TurbomindEngineConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#turbomindengineconfig) and [EngineGenerationConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig) - If you evaluate the InternLM Chat model, please use configuration file `eval_internlm_chat_turbomind.py` - If you evaluate the InternLM 7B model, please modify `eval_internlm_turbomind.py` or `eval_internlm_chat_turbomind.py` by changing to the setting `models = [internlm_7b]` in the last line.